

Heilung durch Innovation, Kompetenz und Partnerschaft

Annual Scientific Report

2019

epth

Heilung durch Innovation, Kompetenz und Partnerschaft

Annual Scientific Report

2019

Final_GBG_ASR_2019.indd 2-3 03.02.20 15:34

Δ

Annual Scientific Report 2019

Index

Introduction	7	
New Study Concepts	41	
GBG 100: APPALACHES	42	
GBG 101: TAXIS	44	
GBG 102: SASCIA	46	
Recruiting Studies	49	
GBG 98: ALEXANDRA/Impassion030	50	
GBG 91: TAMENDOX	52	
GBG 96: GeparDouze	55	
GBG 97: AMICA	58	
GBG 93: PADMA	60	
GBG 94: PATINA	63	
GBG 29: Breast Cancer in Pregnancy (BCP)	66	
GBG 79: Brain Metastases in Breast Cancer (BMBC)	69	
GBG 86: DESIREE	72	
GBG 85: AURORA	74	
Studies in Follow-up	77	
GBG 78: Penelope ^B	78	
GBG 68: GAIN-2	80	
GBG 87: PALLAS	83	
GBG 82: OLYMPIA	85	
GBG 75: INSEMA	87	
Completed Studies	91	
GBG 88: GeparX	92	
Follow-up Activities	97	
Translational Research	105	
GBG Study Finder 2020	108	

Introduction

1.71bout the definal breast droup		
2. Infrastructure of the German Breast Group		ç
3. Cooperations with other study groups		10
4. Publications in 2019		12
4.1. Peer-reviewed articles in 2019		12
4.2. Peer-reviewed reviews in 2019	0.38	14
4.3. Congress contributions in 2019	3 3 2 2 2 2	14
4.4. GBG-Publications Grading System	944	17
4.5. Guideline for Authorship	398,	18
4.6. Oral and poster presentations		19

Final_GBG_ASR_2019.indd 6-7

Introduction

Headquarters:

GBG Forschungs GmbH Martin-Behaim-Strasse 12 63263 Neu-Isenburg GERMANY

Phone: +49 6102 7480-0 Fax: +49 6102 7480-440

www.GBG.de

1. About the German Breast Group

The German Breast Group (GBG), a leading cooperative study group in the field of breast cancer in Germany, provides the comprehensive management of clinical trials in all major therapeutic categories: prevention, neoadjuvant, adjuvant, and palliative. The vision of the GBG is best described as healing by innovation, competence and partnership, from the protocol design and feasibility assessments to the final study report. Through project management in combination with the expert data management and statistical analyses, the GBG delivers consistent high-quality results in order to improve treatment therapies of cancer patients • Pathological Central Laboratory and their quality of life.

The main focus of the GBG is on the investigator initiated trials (IIT). These are clinical studies based on the work of doctors conducting research and are focused on the optimization of therapy and the overall improvement of its quality, unlike industrial studies which are typically affected by approval and marketing aspects.

The GBG currently manages over 40 clinical trials. All services provided by GBG are to the highest standard of the International Conference on Harmonisation of Good Clinical Practice (ICH-GCP1998) and if necessary regulatory requirements. We offer a comprehensive range of services, including:

- Idea and Conception of Study Design
- Clinical Project Management
- Clinical Monitoring
- · Data Management
- · Biometric and Statistics
- External Documentation
- Translational Research
- Biobanking
- · Continuous Medical Education
- Medical Writing
- Sponsorship
- Quality Control

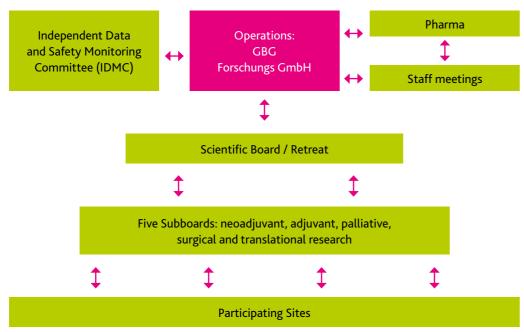


Figure 1: Structure of the German Breast Group

2. Infrastructure of the **German Breast Group**

Participating sites

Participating sites are actively recruiting sites. An official membership is not required, however any physician who takes part in our trials automatically becomes a member of the study group. Usually, most of our investigators work in gynecological institutions such as university clinics, general hospitals, specialist practices and general practices. For several years an increasing number of gynecologic and medical oncologists have been taking part in our trials, thus enriching the trial conception with their knowledge.

Recruitment of patients

Patients are recruited through the participating sites which provide detailed information on the GBG studies to the patient. This way, all existing uncertainties are clarified and an absolute transparency on the conduct of clinical trials can be ensured. Patients are treated according to the latest scientific findings and are carefully controlled and monitored. Thanks to the clinical trials, breast cancer therapies are nowadays carried out on the highest possible standard. The annual patient recruitment is shown in figure 2.

Subboards

Five subboards were active during the last year in the fields of neoadjuvant, adjuvant, palliative, and surgical therapy as well as in the field of translational research. Members of the subboards are all well-known professionals, experienced in Dr. M. Reinisch, Essen treating breast cancer patients and active in the field of breast cancer research and clinical studies. When a subboard decides to launch a new study, the GBG Forschungs GmbH plans, organizes and manages the study, in line with the GBG's belief

that a clinical study must be directly related to the potential improvement of the therapy and its benefits for the patient. Thus, a strict quality monitoring is essential and is ensured by following the GBG in-house standard operating procedures (SOP). The members of the subboards meet once a year face-to-face and 3 times via telephone conferences. Our subboards have been active discussing current studies, research results and further innovative study designs.

The members of our subboards in 2019 are shown below:

Neoadjuvant

Prof. Dr. J. U. Blohmer, Berlin

Prof. Dr. C. Denkert, Marburg Prof. Dr. P. Fasching, Erlangen Dr. C. Hanusch, München Prof. Dr. J. Huober, Ulm Prof. Dr. Ch. Jackisch, Offenbach Dr. T. Link, Dresden Prof. Dr. S. Loibl, Neu-Isenburg PD Dr. K. Rhiem, Köln Prof. Dr. A. Schneeweiss, Heidelberg Prof. Christine Solbach, Frankfurt am Main Prof. Dr. M. Untch. Berlin

Adjuvant

Prof. Dr. W. Janni, Ulm Prof. Dr. S. Loibl, Neu-Isenburg Prof. Dr. F. Marme, Mannheim Prof. Dr. V. Möbus, Frankfurt am Main Prof. Dr. T. Reimer, Rostock Dr. S. Schmatloch, Kassel Prof. Dr. M. Schmidt, Mainz PD Dr. B. Sinn, Berlin Prof. Dr. E. Stickeler, Aachen Prof. Dr. M. Untch, Berlin

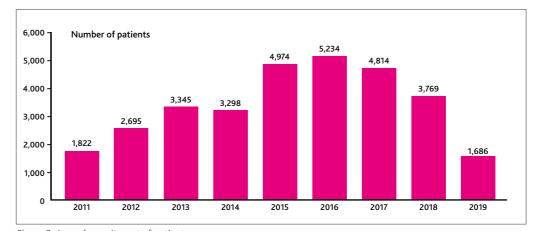


Figure 2: Annual recruitment of patients

Final GBG ASR 2019.indd 8-9 03.02.20 15:34

Palliative

Prof. Dr. T. Decker, Ravensburg

Prof. Dr. C. Denkert, Marburg

Prof. Dr. S. Loibl, Neu-Isenburg

Dr. K. Lübbe, Hannover

Prof. Dr. C. Mundhenke, Bayreuth

Prof. Dr. V. Müller, Hamburg

Prof. Dr. M. Schmidt, Mainz

Dr. J. Seitz, Heidelberg (until 08/16/2019)

Prof. Dr. M. Thill, Frankfurt am Main

Surgical

PD Dr. B. Ataseven, Essen

Prof. Dr. C. Denkert, Marburg

Prof. Dr. B. Gerber, Rostock

Prof. Dr. M. Golatta, Heidelberg

Prof. Dr. M. Hahn, Tübingen

Prof. Dr. J. Heil, Heidelberg

Dr. D. Krug, Kiel

Prof. Dr. T. Kühn, Esslingen

Prof. Dr. S. Loibl, Neu-Isenburg

Translational Research

Prof. Dr. C. Denkert, Marburg

Prof. Dr. P. Fasching, Erlangen

PD Dr. T. Karn, Frankfurt am Main

Prof. Dr. S. Loibl, Neu-Isenburg

PD Dr. M. van Mackelenbergh, Kiel

Prof. Dr. F. Marme, Mannheim Prof. Dr. V. Müller, Hamburg

Prof. Dr. C. Schem, Hamburg

PD Dr. B. Sinn, Berlin

Prof. Dr. E. Stickeler, Aachen

The Independent Data and Safety Monitoring Committee (IDMC)

As early as in 2006, the GBG established the Independent Data and Safety Monitoring Committee (IDMC) to ensure continual improvement of working processes in clinical trials, in-house observation, monitoring and consultation.

The IDMC reviews all GBG sponsored trials regarding:

- 1. Objectives, the scientific impact of the findings and adverse events (AE, SAE, nonbreast cancer deaths) of ongoing trials,
- 2. All major modifications to the trial protocol (including accrual goals),
- 3. The interim and final efficacy analysis of trials, when the protocol-specified number of recruited patients or events has been reached.

Staff Meetings

Staff meetings are conducted on a regular basis, either at the GBG headquarters or via telephone conferences, to ensure sufficient information transfer between the responsible study project managers, study chairs and representatives of the supporting pharmaceutical companies.

3. Cooperations with other study groups

The GBG maintains outstanding cooperative relations with peer national and international study groups, including:

ABCSG:

Austrian Breast & Colorectal Cancer Study Group

AFT:

Alliance Foundation Trials

AGO:

Arbeitsgemeinschaft Gynäkologische Onkologie

AGO-B:

Breast Study Group

ANZBCTG:

Australia and New Zealand Breast Cancer Trials Group

BIG:

Breast International Group

BOOG:

Borstkanker Onderzoeksgroeg Nederland

CCTG:

Canadian Cancer Trials Group Canadian Cancer **Trials Group**

CECOG:

Central European Cooperative Oncology Grou

CIRG:

Cancer

International Research Group

CRUK:

CTI:

Cancer Research UK

Cancer Trials Ireland

CTRU: Clinical Trials Research Unit

EORTC

DKG:

Deutsche Krebsgesellschaft

CANCER RESEARCH UK

EORTC

European Organisation for Research and Treatment of Cancer

Fondazione

Michelangelo:

Scientific organization based in Italy

GEICAM:

GEICAM Grupo Español de Investigación del Cáncer de Mama

IBCSG:

International Breast Cancer Study Group

ICCG

ICCG:

International Collaborative Cancer Group

ICR CTSU: The Institute of Cancer Research

IDDI

JBCRG:

lapan Breast

International Drug Development Institute, Inc.

IKP Stuttgart: Dr. Margarete Fischer-Bosch-Institut für

Klinische Pharmakologie

Breast 一般社团法人JBCRG Cancer Research Group

NOGGO:

Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie

NSABP:

National Surgical Adjuvant Breast and **Bowel Project**

PrECOG, LLC:

Cancer Clinical Trials Research Company, US

SAKK:

Swiss Group for Clinical Cancer Research

SBG:

Scandinavian Breast Cancer Group

SOLTI:

Grupo Español de Estudio Tratamiento y otras Estrategias Experimentales en Tumores Solidos

UCBG:

French breast cancer intergroup UNICACER

UNICANCER: UNICANCER Group, France

Universitätsklinikum Hamburg-Eppendorf

Universität Rostock

UZL:

University Hospital of Leuven

WSG:

Westdeutsche Studiengruppe

Final GBG ASR 2019.indd 10-11 03.02.20 15:34

4. Publications in 2019

Timely publication of study results is a prerequisite for all clinical trials. GBG is responsible for an unbiased and independent release of all study results and the subsequent, related translational research projects.

Our research reports were published in leading scientific journals like the New England Journal of Medicine, The Lancet, Journal of Clinical Oncology, The Lancet Oncology, Journal of the National Cancer Institute, Annals of Oncology, European Journal of Cancer, Breast Cancer 6. Research and Treatment and others.

Our studies are constantly presented as oral presentations, poster discussions or posters at international congresses such as ASCO, SABCS, ESMO and DGS.

Peer-review articles, reviews and congress contributions in 2019 are listed in 4.1., 4.2. and 4.3. 7.

4.1. Peer-reviewed articles in 2019

- Golshan M, Loibl S, Wong SM, Houber JB, O'Shaugnessy J, et al. Breast Conservation After Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer: Surgical Results From the BrighTNess Randomized Clinical Trial JAMA Surg. 2020;doi:10.1001/ jamasurg. 2019.5410 (2019 online ahead of print).
- Papakonstantinou A, Matikas A, Bengtsson NO, Malmström P, Hedayati E, et al. Efficacy and Safety of Tailored and Dose-Dense Adjuvant Chemotherapy and Trastuzumab for Resected HER2-Positive Breast Cancer: Results From the Phase 3 PANTHER Trial. Cancer. 2019;doi:10.1002/ cncr.32653.
- Cuzick J, Sestak I, Forbes JF, Dowsett M, Cawthorn S, et al. Use of anastrozole for breast cancer prevention (IBIS-II): long-term results of a randomised controlled trial. Lancet. 2019;doi:10.1016/S0140-6736(19) 32955-1.
- 4. Sinn BV, Weber KE, Schmitt WD, Fasching PA, Symmans WF, et al. Human leucocyte

antigen class I in hormone receptorpositive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019;21:142.

- Witzel I, Loibl S, Wirtz R, Fasching PA, Denkert C, et al. Androgen receptor expression and response to chemotherapy in breast cancer patients treated in the neoadjuvant TECHNO and PREPARE trial. Br | Cancer. 2019 2019; 121:1009–1015.
- Heitz F, Kümmel S, Lederer B, Solbach C, Engels K, Ataseven B, Sinn B, Blohmer JU, Denkert C, Barinoff J, Fisseler-Eckhoff A, Loibl S. Impact of Nuclear Oestrogen Receptor Beta Expression in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Geburtshilfe Frauenheilkd. 2019; 79: 1110-1117.
- Hui R, Pearson A, Cortés J, Campbell C, Poirot C, et al. Lucitanib for the treatment of HR(+)/ HER2(-) metastatic breast cancer: results from the multicohort phase II FINESSE study. Clin Cancer Res. 2019;doi:10.1158/1078-0432.CCR-19-1164.
- Golshan M, Wong SM, Loibl S, Huober JB, O'Shaughnessy J, et al. Early assessment with magnetic resonance imaging for prediction of pathologic response to neoadjuvant chemotherapy in triplenegative breast cancer: Results from the phase III BrighTNess trial. Eur J Surg Oncol. 2019;doi:10.1016/j.ejso.2019.10.002
- Papakonstantinou A, Hedayati E, Hellström M, Johansson H, Gnant M, et al. Neutropenic complications in the PANTHER phase III study of adjuvant tailored dose-dense chemotherapy in early breast cancer. Acta Oncol. 2020;59:75–81 (2019 online ahead of print).
- Banys-Paluchowski M, Loibl S, Witzel I, Mundhenke C, Lederer B, et al. Clinical Relevance of Collagen Protein Degradation Markers C3M and C4M in the Serum of Breast Cancer Patients Treated with Neoadjuvant Therapy in the GeparQuinto Trial. Cancers (Basel). 2019;11:1186.
- PA, Symmans WF, et al. Human leucocyte 11. Krug D, Lederer B, Seither F, Nekljudova V,

Ataseven B, et al. Post-Mastectomy Radiotherapy After Neoadjuvant Chemotherapy in Breast Cancer: A Pooled Retrospective Analysis of Three Prospective Randomized Trials. Ann Surg Oncol. 2019;26:3892-3901.

- Kümmel A, Kümmel S, Blohmer JU, Faridi A, Nitz U, et al. Autologous Lipotransfer -Daily Therapeutic Practice in Breast Cancer: An Intergroup Analysis Encompassing NOGGO, WSG, GBG, AWO Gyn and DGPRÄC. Breast Care (Basel). 2019;14:165-169.
- 13. Martín M, Loibl S, Hyslop T, De la Haba-Rodríguez J, Aktas B, et al. Evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for hormone receptor-positive metastatic breast cancer: a pooled analysis from the LEA (GEICAM/ 2006-11_GBG51) and CALGB 40503 (Alliance) trials. Eur J Cancer. 2019;117:91-98.
- 14. Furlanetto J, von Minckwitz G, Lederer B, Möbus V, Schneeweiss A, et al. Fatal events during clinical trials: an evaluation of deaths during breast cancer studies. Breast Cancer. 2019;26:826-834.
- 15. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple negative breast cancer clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;doi: 10.1093/annonc/mdz158.
- Untch M, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, et al. NAB-Paclitaxel Improves Disease-Free Survival in Early Breast Cancer: GBG 69-GeparSepto. J Clin Oncol. 2019;37:2226-2234.
- 17. Laakmann E, Witzel I, Fasching PA, Rezai M, Schem C, et al. Development of central nervous system metastases as a first site of metastatic disease in breast cancer patients treated in the neoadjuvant trials GeparQuinto and GeparSixto. Breast Cancer Res. 2019;21:60.
- 18. Noske A, Möbus V, Weber K, Schmatloch S, Weichert W, et al. Relevance of tumour-

- infiltrating lymphocytes, PD-1 and PD-L1 in patients with high-risk, nodal-metastasised breast cancer of the German Adjuvant Intergroup Node-positive study. Eur J Cancer. 2019;114:76-88.
- Denkert C, Budczies J, Regan MM, Loibl S, Dell'Orto P, et al. Clinical and analytical validation of Ki-67 in 9069 patients from IBCSG VIII+IX, BIG1-98 and GeparTrio trial: systematic modulation of interobserver variance in a comprehensive in silico ring trial. Breast Cancer Res Treat. 2019;176:557-568.
- 20. Kuemmel S, Holtschmidt J, Gerber B, Von der Assen A, Heil J, et al. Prospective, Multicenter, Randomized Phase III Trial Evaluating the Impact of Lymphoscintigraphy as Part of Sentinel Node Biopsy in Early Breast Cancer: SenSzi (GBG80) Trial. J Clin Oncol. 2019;37:1490-1498.
- 21. Loibl S, Treue D, Budczies J, Weber K, Stenzinger A, et al. Mutational Diversity and Therapy Response in Breast Cancer: A Sequencing Analysis in the Neoadjuvant GeparSepto Trial. Clin Cancer Res. 2019; 25:3986-3995.
- 22. Lambertini M, Di Maio M, Poggio F, Pagani O, Curigliano G, et al. Knowledge, attitudes and practice of physicians towards fertility and pregnancy-related issues in young BRCA-mutated breast cancer patients. Reprod Biomed Online. 2019; 38:835-844.
- 23. Escala-Garcia M, Guo Q, Dörk T, Canisius S, Keeman R, et al. Genome-wide association study of germline variants and breast cancer-specific mortality. Br J Cancer. 2019;120:647-657.
- 24. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. Lancet. 2019;393: 1440-1452.
- 25. Janning M, Müller V, Vettorazzi E, Cubas-Cordova M, Gensch V, et al. Evaluation of

Final_GBG_ASR_2019.indd 12-13 03.02.20 15:34

- soluble carbonic anhydrase IX as predictive marker for efficacy of bevacizumab: A biomarker analysis from the geparquinto phase III neoadjuvant breast cancer trial. Int | Cancer. 2019;145:857-868.
- 26. Eggemann H, Bernreiter AL, Reinisch M, Loibl S, Taran FA, et al. Tamoxifen treatment for male breast cancer and risk of thromboembolism: prospective cohort analysis. Br J Cancer. 2019;120:301-305.
- 27. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am | Hum Genet. 2019;104:21-34.
- 28. Shu X, Wu L, Khankari NK, Shu X-O, Wang TJ, et al. (Breast Cancer Association Consortium). Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. Int J Epidemiol. 2019;48:795-806.

4.2. Peer-reviewed reviews in 2019

1. Froehlich K, Schmidt A, Heger JI, Al-Kawlani B, Aberl CA, Jeschke U, Loibl S, Markert UR. Breast cancer, placenta and pregnancy. Eur I Cancer. 2019;115:68-78. Review.

4.3. Congress contributions in 2019

SABCS:

San Antonio Breast Cancer Symposium, December 10-14, 2019,

San Antonio, Texas, USA

van Mackelenberg M, Seither F, Möbus V et al. Effects of capecitabine as part of neo-/adjuvant chemotherapy. A meta-analysis of individual patient data from 12 randomized trials including 15,457 patients. SABCS 2019; GS1-07, oral presentation.

Williams T, Schneeweiss A, Jackisch C et al. Caveolin gene expression predicts for response and clinical outcomes of patients treated with preoperative paclitaxel-based chemotherapy regimens in early stage breast cancer. SABCS 2019; P1-10-01, poster.

Blohmer J, Link T, Kümmel S et al. Investigating denosumab as an add-on treatment to neoadjuvant chemotherapy and two different nabpaclitaxel schedules in a 2x2 design in primary breast cancer - First results of the GeparX study. SABCS 2019; GS3-01, oral presentation.

Fasching PA, Denkert C, Benz S et al. Tumor immune-cell activity assessed by RNAseq is an independent predictor of therapy response and prognosis after neoadjuvant chemotherapy in HER2 negative breast cancer patients - an analysis of the GeparSepto trial. SABCS 2019; PD5-08, poster discussion.

Fröhlich K, Plösch T, Seither F et al. Histological and epigenetic analyses of placenta tissue from breast cancer patients and healthy participants. SABCS 2019; P4-04-08, poster.

Loibl S, Untch M, Buyse M et al. Pathologic complete response (pCR) and prognosis following neoadjuvant chemotherapy plus anti-HER2 therapy of HER2-positive early breast cancer (EBC). SABCS 2019; P5-06-02, poster.

Szeto C, Denkert C, Fasching PA et al. Landscape of immune-cell signatures in early high-risk breast cancer (BC) reveals clinically-relevant enrichment of immune subpopulations. SABCS 2019;P6-10-04, poster.

Furlanetto I, Möbus V, Schneeweiss A et al. Germline (g)BRCA1/2 mutations (m) and hematological toxicities in patients (pts) with triple negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NACT). SABCS 2019;P6-10-03, poster.

Piccart M, Procter M, Fumagalli D et al. Interim overall survival analysis of APHINITY (BIG 4-11): A randomized multicenter, double-blind, placebocontrolled trial comparing chemotherapy plus trastuzumab plus pertuzumab versus chemotherapy plus trastuzumab plus placebo as adjuvant therapy in patients with operable HER2-positive early breast cancer. SABCS 2019;GS1-04, oral presentation.

Cuzick J, Sestak I, Forbes J et al. (IBIS-II investigators). Ten year results of the international breast cancer intervention study II. SABCS 2019;GS4-04, oral presentation.

Mano MS, Loibl S, Mamounas EP et al. Adjuvant trastuzumab emtansine (T-DM1) vs trastuzumab (H) in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: KATHERINE subgroup analysis. SABCS 2019;P3-14-01, poster.

Geyer CE Jr, Loibl S, Rastogi P et al. A randomized double-blind phase III clinical trial of neoadjuvant chemotherapy (NAC) with atezolizumab or placebo in patients (pts) with triple negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo: NSABP B-59/GBG 96-GeparDouze. SABCS 2019;OT2-04-08, poster.

Jerusalem G, Farah S, Chirgwin J et al. Sole (study of letrozole extension), a phase 3 randomized clinical trial of continuous vs intermittent letrozole in postmenopausal women who have received 4-6 years of adjuvant endocrine therapy for lymph node-positive, early breast cancer (bc): final analysis and sole estrogen substudy (sole-est). SABCS 2019; P5-12-01, poster.

DGP:

103. Jahrestagung der Deutschen Gesellschaft für Pathologie, June 13-15, 2019, Frankfurt am Main, Germany

Sinn BV, Loibl S, Karn T et al. Expression von PD-L1 und dynamische Veränderungen tumorinfiltrierender Lymphozyten bei neoadjuvanter Chemotherapie mit Immun-Checkpunkt-Blockade beim frühen triple-negativen Mammakarzinom. DGP 2019, AG05.02, oral presentation.

ESMO:

European Society for Medical Oncology, September 27-October 1, 2019 Barcelona, Spain

Furlanetto J, Nekljudova V, Schneeweiss A et al. Impact of chemotherapy-induced ovarian failure (CIOF) on disease-free survival (DFS) and overall survival (OS) in young women with early breast cancer (EBC). Ann Oncol 2019; Volume 30, Issue Suppl_5, 180PD, poster discussion.

Marmé F, Solbach C, Michel L et al. Utility of the CPS+EG scoring system in triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Oncol 2019; Volume 30, Issue Suppl_5, 182PD, poster discussion.

Werutsky G, Untch M, Hanusch C et al. Risk factors for locoregional recurrence (LRR) after

neoadjuvant chemotherapy: pooled analysis of prospective neoadjuvant breast cancer (BC) trials. Ann Oncol 2019; Volume 30, Issue Suppl 5, 188P, poster.

Tesch H, Loibl S, Kast K et al. Chemotherapy (CT)-induced anaemia in patients (pts) treated with dose-dense regimen: Results of the prospectively randomised anaemia substudy from the neoadjuvant GeparOcto study. Ann Oncol 2019; Volume 30, Issue Suppl 5, 195P, poster.

Untch M, Geyer C, Huang C et al. Peripheral neuropathy (PN), thrombocytopenia (TCP) and central nervous system (CNS) recurrence: an update of the phase III KATHERINE trial of postneoadjuvant trastuzumab emtansine (T-DM1) or trastuzumab (H) in patients (pts) with residual invasive HER2-positive breast cancer (BC). Ann Oncol 2019; Volume 30, Issue Suppl_5, LBA19, oral presentation.

DGS:

Deutsche Gesellschaft für Senologie 39. Jahrestagung, June 27-29, 2019,

Berlin, Germany

Banys-Paluchowski M, Loibl S, Witzel I et al. Clinical relevance of collagen protein degradation markers C3M and C4M in the serum of breast cancer patients treated with neoadjuvant therapy in the GeparQuinto trial. DGS 2019, #094, poster.

Reimer T. Update NSEMA-Studie. DGS 2019; oral presentation.

American Society of Clinical Oncology, Annual Meeting May 31-4 June, 2019, Chicago, IL, USA

Denkert C, Link T, Jank P et al. Comparison of an automated cartridge-based system for mRNA assessment with central immunohistochemistry in the neoadjuvant GeparX trial. J Clin Oncol 2019;37.15_suppl.3075, poster.

Loibl S, Sinn BV, Karn T et al. Exome analysis of oncogenic pathways and tumor mutational burden (TMB) in triple-negative breast cancer (TNBC): Results of the translational biomarker program of the neoadjuvant doubleblind placebo controlled GeparNuevo trial. J Clin Oncol 2019;37.15_suppl.509, poster discussion.

Final GBG ASR 2019.indd 14-15 03.02.20 15:34

Seliger B, Karn T, Denkert C et al. Correlation of the tumor mutational burden with the composition of the immune cell subpopulations in peripheral blood of triple-negative breast cancer patients undergoing neoadjuvant therapy with durvalumab: Results from the prospectively randomized GeparNuevo trial. J Clin Oncol 2019;37.15_suppl.588, poster.

Pohl-Rescigno E, Hauke J, Rhiem K et al. Germline mutation status and therapy response in highrisk early breast cancer: Results of the GeparOcto study (NCT02125344). J Clin Oncol 2019;37.15_suppl.573, poster.

Fasching PA, Jackisch C, Rhiem K et al. GeparOLA: A randomized phase II trial to assess the efficacy of paclitaxel and olaparib in comparison to paclitaxel/carboplatin followed by epirubicin/cyclophosphamide as neoadjuvant chemotherapy in patients (pts) with HER2-negative early breast cancer (BC) and homologous recombination deficiency (HRD). J Clin Oncol 2019;37.15_suppl.506, oral presentation.

Geyer CE, Loibl S, Rastogi P et al. NSABP B-59/GBG 96-GeparDouze: A randomized double-blind phase III clinical trial of neoadjuvant chemotherapy (NAC) with atezolizumab or placebo in patients (pts) with triple-negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo. J Clin Oncol 2019; 37.15_suppl.TPS605, poster.

Krop IE, Paulson J, Campbell C et al. Genomic correlates of response to adjuvant trastuzumab (H) and pertuzumab (P) in HER2+ breast cancer (BC): Biomarker analysis of the APHINITY trial. J Clin Oncol 2019;37:15_suppl.1012, oral presentation.

Schneeweiss A, Loib S, Mamounas EP et al. Patient-reported outcomes (PROs) from KATHERINE: A phase III study of adjuvant trastuzumab emtansine (T-DM1) versus trastuzumab (H) in patients (pts) with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer. J Clin Oncol 2019; 37.15_suppl.513, poster discussion.

Metzger O, Stover DG, Asad S et al. Immunophenotype and proliferation to predict for response to neoadjuvant chemotherapy in TNBC: Results from BrighTNess phase III study. J Clin Oncol 2019; 37.15_suppl.510, poster discussion.

ESMO-Breast Cancer 2019, May 2-4, 2019,

Berlin, Germany

Huober J, Schneeweiss A, Blohmer JU et al. Factors predicting relapse in early breast cancer patients with a pathological complete response after neoadjuvant therapy: pooled analysis based on the GBG database. Ann Oncol 2019; 30 (suppl_3): iii34-iii38; #1080, oral presentation.

Jank P, Loibl S, Fasching PA et al. Influence of PIK3CA mutations on breast cancer proliferation, lymphocyte infiltration and clinical outcome: pooled analysis of 484 patients from three prospective multicentre GBG trials. Ann Oncol 2019; 30 (suppl_3): iii1-iii26, #15P, poster.

Loibl S, Jackisch C, Rastogi P et al. GeparDouze/ NSABP B-59: A randomized double-blind phase III clinical trial of neoadjuvant chemotherapy with atezolizumab or placebo in patients with triple negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo. Ann Oncol 2019; 30 (suppl_3): iii34-iii38, #122TiP, poster.

Denkert C, Link T, Jank P et al. (on behalf of the GBG neoadjuvant and translational subboard). Expression of ER, PR, HER2 and Ki-67 in the neoadjuvant GeparX trial - comparison of central immunohistochemistry (IHC) with an automated cartridge-based system for mRNA assessment. Ann Oncol 2019; 30 (suppl_3): iii1-iii26, #25P, poster.

Karn T, Denkert C, Weber KE et al. Para-necrotic expression of VEGFA metagene signature identified by single-cell profiling. Ann Oncol 2019; 30 (suppl_3): iii1-iii26, #9O, poster discussion.

4.4. GBG-Publications Grading System

To set internal publication goals and to measure our own success, we established our GBG inhouse grading system as follows:

- 7 GBG points for preparation or final publication in a high quality peer-reviewed journal with an impact factor greater than 5,
- 5 GBG points for publication preparation or final publication in a journal with an impact factor of less than 5,
- 3 GBG points for an oral presentation or poster discussion,
- and 2 GBG points for a poster presentation at an international congress.

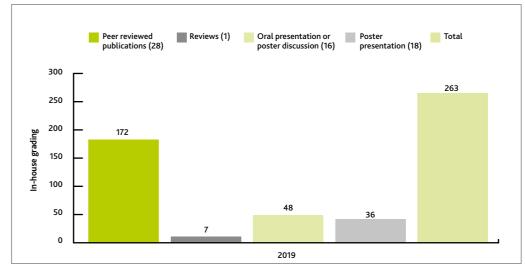


Figure 3: Overview of GBG's in-house grading for publications in 2019

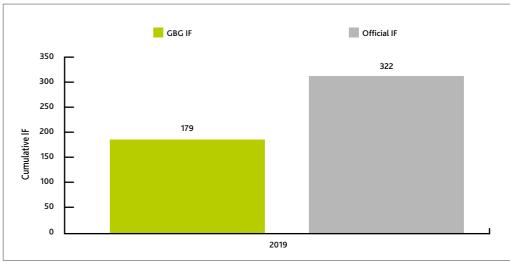


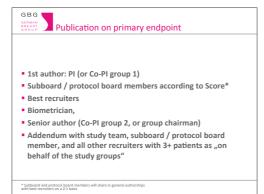
Figure 4: GBG and official Impact Factor (IF) in 2019

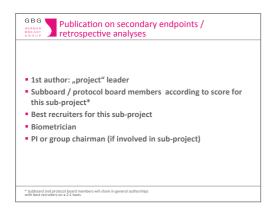

Final_GBG_ASR_2019.indd 16-17 03.02.20 15:34

4.5. Guideline for Authorship

In order to guarantee a maximum of transparency when assigning the co-authorship we have established internal GBG guideline for authorship. The details are listed below:

- Separate rules for:
 Main publication on primary endpoint
- Publications on secondary endpoints
- Translational research publications
- No honorary authorships
- Author positions can be transferred to a junior person, if also involved in the study




- Recruitment among best 3rd of participating sites
- Statistical Analysis Plan development
- Manuscript preparation

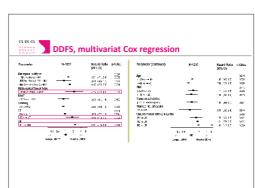
Protocol writing

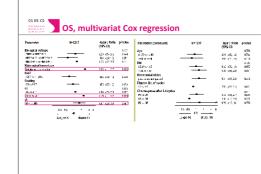
- In time response to emails concerning the trial and the manuscript (within 4 weeks)
- In time response for COI (within 2 weeks)
 (negative point for subsequent publications)

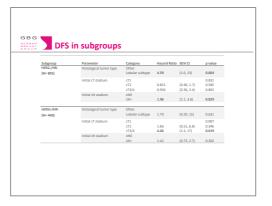
4.6. Oral and poster presentations

Patient characteristics

Patients and methods

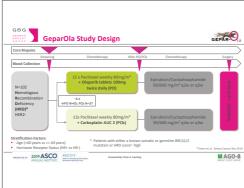

2188 patients with pCR (ypTO/is ypN0) from GeparTrio, GeparQuattro, GeparQuinto, GeparSixto and GeparSepto trial were included

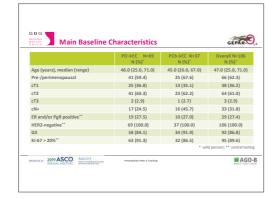

Objectives were disease-free survival (DFS), distant DFS (DDFS), overall survival (OS)

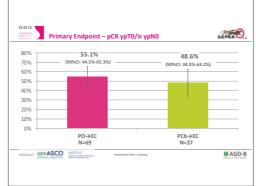

Multivariate Cox regression models included potential risk factors as well as study ID

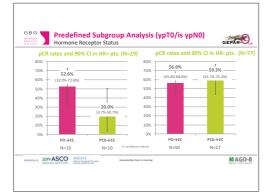
Survival rates were estimated using Kaplan-Meier method

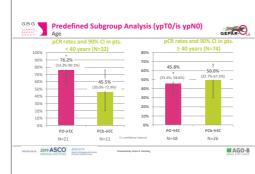
After a median follow up of 59 months 290 DFS, 197 DDFS and 130 OS event were observed

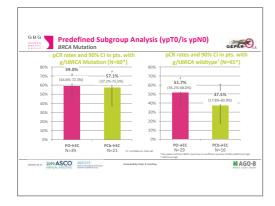


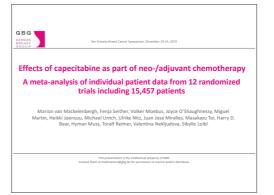

pCR and relapse (ESMO Breast Cancer 2019)


Final_GBG_ASR_2019.indd 18-19 03.02.20 15:34

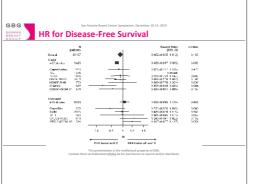

GeparOLA study (ASCO 2019)

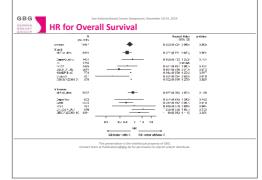


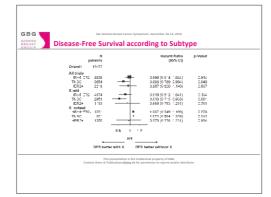


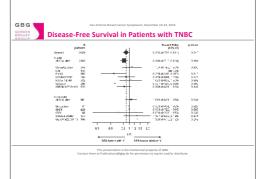


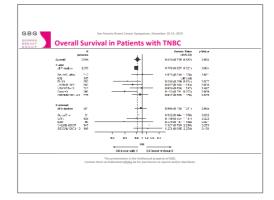


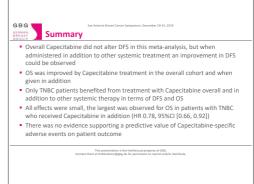


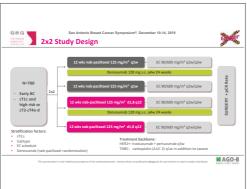


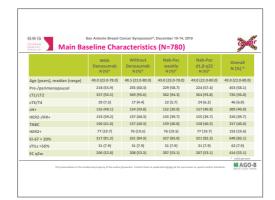




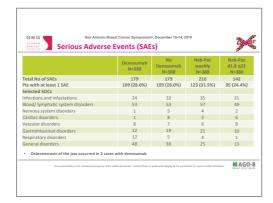


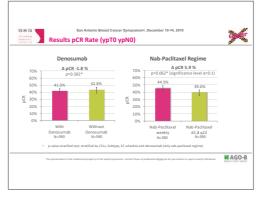


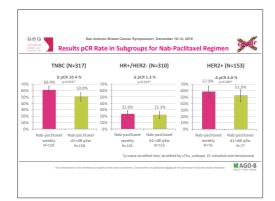

Capecitabine meta-analysis (SABCS 2019)


Final_GBG_ASR_2019.indd 20-21 03.02.20 15:34

22 | Annual Scientific Report 2019 | Introduction _______ 23


GeparX study (SABCS 2019)





Completed all treatments	Denosumab N (%) 297 (78.2)	No Denosumab N (%) 319 (82.2)	Nab-Pac weekly N (%) 283 (72.9)	Nab-Pac d1,8 q N (%) 333 (87.6)
Discontinued nab-paclitaxel	56 (14.7)	48 (12.4)	80 (20.6)	24 (6.3)
Local progression	5 (1.3)	4 (1.0)	1 (0.3)	8 (2.1)
Distant relapse/ secondary malignancy	1 (0.3)	1 (0.3)	1 (0.3)	1 (0.3)
Death	1 (0.3)			1 (0.3)
Adverse event	42 (11.1)	40 (10.3)	68 (17.5)	14 (3.7)
Patient's / Investigator's decision	7 (1.8)	3 (0.8)	10 (2.6)	0 (0.0)
Started EC	350 (92.1)	371 (95.6)	359 (92.5)	362 (95.3)
Discontinued EC	24 (6.3)	25 (6.4)	27 (7.0)	22 (5.8)
Local progression	2 (0.5)	1 (0.3)		3 (0.8)
Distant relapse/ secondary malignancy				
Death				-
Adverse event	14 (3.7)	13 (3.4)	21 (5.4)	6 (1.6)
Patient's / Investigator's decision	8 (2.1)	11 (2.9)	6 (1.6)	13 (3.4)

San Antonio Breast Cancer Symposium ¹ , December 10-14, 2019 Summary and Conclusion	
 In the GeparX study the addition of denosumab to NACT did not incr pCR rate in early BC (41% with denosumab vs 43% without denosum: p=0.582) 	
 Nab-paclitaxel 125mg/m² weekly resulted in a significantly higher pC given d1,8 q22 (45% vs 39%; p=0.062) 	CR rate than
 Nab-paclitaxel 125mg/m² weekly resulted in a higher rate of SAEs an rate of treatment discontinuations mainly due to adverse events con nab-paclitaxel 125mg/m² d1,8 q22 	
 In TNBC optimized NACT with nab-paclitaxel 125mg/m² weekly plus followed by EC achieves a pCR rate of at least 60% 	carboplatin
Further translational research (e.g. RANK expression) is ongoing	
This presentation is the intellectual property of the author/presenter. Contact them at publication of gifty de for permission to reprint and/or distrib	MAGO-B

Final_GBG_ASR_2019.indd 22-23 03.02.20 15:34

A Randomized, Double-Blind, Phase III Trial of Neoadjuvant Chemotherapy with Atezolizumab/Placebo in Patients with Triple-Negative Breast Cancer Followed by Adjuvant Continuation of Atezolizumab/Placebo (NSABP B-59/GeparDouze)

NSABP

Sibylle Loib1*, Christian Jackisch², Priya Rastogi³, Sabine Seiler¹, Peter C Lucas⁴, Carsten Denkert⁵, Joseph Costantino⁴, Valentina Nekljudova¹, Norman Wolmark⁵, Charles Geyer⁶¹German Breast Group, Neu-Isenburg, 'Sana Klinikum Ollenbach; 'National Surgical Adjuvant Breast and Bowel Project (NSABP), Magee-Womens Hospital of UPMC, Pittsburgh, USA; 'NSABP, University of Pittsburgh, USA;

122 TIP

Background

- Triple-negative breast cancer (TNBC) is a heterogeneous group of cancers characterized by:
- <1% of cells positive for ER and PgR receptors</p>
- Negative for HER2 amplification or overexpression
- TNBC is associated with higher percentages of pathological complete response (pCR) to neoadjuvant chemotherapy (NACT), and women with a pCR have a favorable prognosis.
- Patients with TNBC and residual disease following NACT have higher risk for recurrence than patients with other subtypes of breast cancer with residual disease.^{1,2}
- Poor survival once metastatic disease develops.
- Therapeutic blockade of PD-L1 binding by atezolizumab has resulted in relevant anti-tumor efficacy in TNBC.^{3,4}
- Primary efficacy results of IMpassion130 have demonstrated clinically relevant activity in patients with untreated metastatic TNBC coupled with an acceptable safety profile.⁵

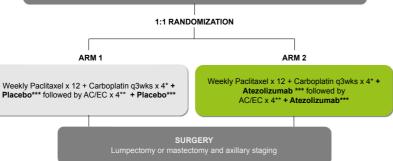
Study Overview

- GeparDouze (NSABP B-59/GBG96; NCT 03281954) is a phase III, randomized, double-blind, placebo-controlled study of neoadjuvant administration of atezolizumab/placebo in combination with anthracycline-/taxane-/carboplatin-based NACT in patients with early TNBC. After surgery patients will reinitate atezolizumab/placebo as adjuvant therapy to complete 1 year of treatment (Figure 1).
- This study includes a cardiac safety lead-in for the first 60 patients who initiate AC/EC in order to identify any cardiac toxicity (recruitment completed).
- Biospecimen Collection: Tumor samples before study entry, prior to 2nd dose of atezolizumab/placebo and at time of definitive surgery.
- GeparDouze will randomize (1:1) 1520 patients. Stratification variables are:
- Region (North America; Europe)
- Tumor size (1.1-3.0cm; >3.0cm)
- Schedule of epirubicin (E) or doxorubicin (A) in combination with cyclophosphamide (C) (q2w; q3w)
- Clinical nodal status (positive; negative)

Objectives and Endpoints

- Co-primary objectives: To determine whether the addition of atezolizumab to chemotherapy improves:
 the pCR in the breast and post-therapy lymph nodes
- (ypT0/Tis ypN0)
- the event-free survival (EFS)
- Secondary objectives (selection):
- To assess other pCR definitions, survival endpoints, toxicity and cardiac safety.
- Correlative objectives (selection):
- Evaluate expression of PD-L1, and percentages of TILs as predictors for pCR and EFS.
- Evaluate percentages of TILs in patients with residual breast cancer after surgery as predictor for EFS.
- Use baseline and on-therapy specimens to explore potential new biomarkers of response and resistance.

In Preparation: Initial Amendment


Aim:

- To add PD-L1 status as stratification factor.
- To allow entry and randomization of patients with asymptomatic laboratory-identified endocrinopathies discovered on baseline TSH and AM cortisol:
 - hypothyroidism
- adrenal insufficiency
- To add immune nephritis and myositis as immune toxicities and provide management guidelines.

Figure 1. GeparDouze Study Design

Patients with HER2-negative, ER-negative and PgR-negative invasive breast cancer diagnosed by core needle biopsy

N=1520

Placebo*** to complete 1 year of therapy

ARM 1

Atezolizumab*** to complete 1 year of therapy

ARM 2

- * Carboplatin AUC 5 IV q3wks x 4 doses in combination with paclitaxel 80mg/m² IV weekly x 12 doses
- ** Doxorubicin 60mg/m^2 IV or epirubicin 90mg/m^2 IV in combination with cyclophosphamide 600mg/m^2 IV x 4 doses; q2wks vs q3wks per investigator's decision
- *** Atezolizumab 1200mg or placebo IV q3wks initiated with chemotherapy and administered for 1 year with break for surgery

Key Inclusion Criteria

Key Exclusion Criteria

- Age ≥ 18 years
- Females or males
- Diagnosis of invasive adenocarcinoma of the breast by core needle biopsy
- Primary tumor must be:
- T₂ or T₃ if node negative
- T_{1c}, T₂, or T₃ if node positive
- Central testing must confirm
- HER2 negativity by ASCO/CAP guidelines
 ER and PgR negativity by ASCO/CAP guidelines
- Patients with synchronous bilateral or multicentric HER2-negative breast cancer are eligible as long as the highest risk tumor is ER-negative and PgRnegative and meets stage eligibility criteria
- LVEF ≥55%

- Excisional biopsy or lumpectomy performed prior to study entry
- Surgical axillary staging procedure prior to randomization. Exception: FNA or core biopsy of an axillary node is permitted for any patient
- Definitive clinical or radiologic evidence of metastatic disease
- Previous therapy with anthracyclines or taxanes for any malignancy
- Cardiac disease (history of and/or active disease) that would preclude the use of the drugs included in the treatment regimens
- Active or history of autoimmune disease or immune deficiency with the following exceptions:
- Patients with a history of autoimmune-related hypothyroidism on a stable dose of thyroid replacement hormone
- Patients with controlled Type 1 diabetes mellitus on a stable dose of insulin regimen
- Patients with eczema, psoriasis, lichen simplex chronicus, or vitiligo with dermatologic manifestations only [...]

Conclusion

- GeparDouze is a phase III, double-blind, placebo-controlled study of atezolizumab/placebo in combination with NACT in patients with TNBC followed by atezolizumab/placebo as adjuvant therapy.
- Recruitment has started in 12/2017 and is expected to take place across ~ 150 sites in North America and Europe.
- GeparDouze will provide important data on efficacy and safety of atezolizumab in patients with early TNBC.

References and Conflict of Interest

References:

- Liedike C, et al. J Clin Oncol. 2008; 26: 1275-81; 2. Hahnen E, et al. JAMA Oncol. 2017; 3(10): 1378-85; 3. Adams S, et al. J Clin Oncol. 2016;
 34.15_suppl, Abstract 1009, 4. Schmid P, et al. Cancer Res. 2017; 77(13 Suppl): Abstract 2986; 5. Schmid P, et al. N Engl J Med 2018:379(22):2108-21
- Conflict of Interest (COIs):

 During the conduct of the study: S Loibl, P Rastogi, S Seiler, P Lucas, J Costantino and C Geyer report grants from Genentech/Roche; C Jackisch reports presonal fees from Roche and Celegene; C Denkert reports personal fees from Roche; N Wolmark reports other COIs from Genentech/Roche.
- reports personal fees from Roche and Celgene; C Denkert reports personal fees from Roche. N Wolmark reports of the Common fees from Roche and Celgene; C Denkert reports personal fees from Roche. N Wolmark reports other COIs from Genentech/Roche.

 Relevant financial activities outside the submitted work: S Loib! AstraZeneca, Pfizer, Celgene, Amgen, Abbive, Daichi and from Eirgenix; P
 Rastogi: AstraZeneca, Genentech/Roche and from Lilly:P Lucas: Amgen, and Bayer/Lox; C Denkert: Sividon Diagnostics, Teva, Novardis, Pfizer,
 Amgen, MSD, Daichi, Celgene, AstraZeneca and patent application EP18209672 (cancer immunotherapy); C Geyer: AstraZeneca, Abbive, Celgene,
 Genentech/Broche

Presented at:

ESMO BREAST CANCER, 2 - 4 May 2019 in Berlin, Germany

The trial is financially supported by Genentech/Roche

This presentation is the intellectual property of the author/preser Contact them at publications@gbg.de for permission to reprint and/or distrib

Influence of PIK3CA mutations on breast cancer proliferation, lymphocyte infiltration and clinical outcome MAGO-B pooled analysis of 868 patients from three prospective multicentre GBG trials CHARITÉ The PI3K signaling pathway is frequently dysregulated in breast cancer (BC), effected through mutations in PIXCAC, which encodes for the catalytically subunit p110-alpha. An influence of PIXSCA mutations in therapy response resistance associated with a worse clinical outcome has previously been shown for HER2+ BC [1]. Mutations in exon 9 or 20 may play a role in cell proliferation and therapy response [2]. (NCT01426880). Classical Sanger sequencing in exon 9 and 20 was performed on formalin-fixed paraffin embedded pretherapeutical core biopsies with a tumor content >=20%. OVERALL WT 598 671 641 710 MUT 122 49 79 10 668 WT 176 210 196 229 52 MUT 56 22 36 3 OVERALL HR+ HER2+ mot mutated mutated HR- HER2+ TNBC =0.002 p=0.066 p=0.031 p=0.554 p=0.133 p=0.008 p=0.052 p=0.080 p=0.347 p=1.000 p=0.693 p=0.022 WT 721 809 773 856 850 807 WT 236 279 258 300 294 273 WT 147 59 95 12 18 61 MUT 67 24 12 3 9 29 MUT 49 24 26 5 (p.E545K p.H1047R p.E545K p.E OVERALL PIK3CA PIK3CA wildtype mutated (any 95% CI P-value (Log Rank) p-value (Log Rank) Mean 95% CI p-value (Log Rank) Mutation analysis of exon 9 and 20 were sin 868 case successful: PIK3CA was mutated in 16.9% of the cases. Hormone receptor positive (HER2 negative) tumors were too rare (N=23) for statistical analyses and were excluded and not shown. Detection of a PIK3CA mutation was not associated significantly with a higher proliferation rate (Ki67 > 20%: 73.8% mut. vs. 78.6% WT, p=0.282). Triple tumors were rarely Ki67 high when exon 20 was mutated (p=0.004) (Figure 2). Detection of any PIK3CA mutation was associated significantly with the control of the picture of PIK3CA is with 16.9% a frequently mutated gene in breast cancer [2]. Only in the HRP/HRR2+ group PIK3CA mutation p.H1047R results in higher proliferation, but is reversed in TNBC when exon 20 was mutated. According to pathologic complete response, PIK3CA could used as a biomarker for pathologic complete response (p.CR, ypT0 ypN0) [24.5% in PIK3CA mutated vs. 37.7% in wildtype; p=0.002). This effect was seen when exon 20 or p.1047 in exon 20 was mutated (Figure 3). According to pathologic complete response, PIKSCA could used as a biomarker for a worse outcome and is reliable for all molecular subgroups. In the overall group the mutation p.EASSK of PIKSCA is associated with lower stromal lymphocyte infiltration. PIKSCA mutations are not associated with differences in intratumoral lymphocyte infiltration. In survival analyses (DFS and

Final_GBG_ASR_2019.indd 24-25 03.02.20 15:34

| UNIKLINIK Center for Familial Breast and Ovarian Cancer | University Hospital of Cologne

Germline mutation status and therapy response in high-risk early breast cancer: Results of the GeparOcto study (NCT02125344)

MAGO-B

GBG

Geparocto

The gBRCA1/2 mutation prevalence was 17.6% (69393) in TNBC, 14.4% (21368) in Insh-risk subgroup (69393) in TNBC, 14.4% (21368) in Insh-risk subgroup in TNBC, 14.4% (21368) in Insh-risk subgroups of TNBC and high-risk staffs. And 14.4% (3368) in Instructions on the Instruction of Instruction o

GeparOcto compared the efficacy of two neoadjuvant treatment regimens in high-risk early breast cancer (IOS.) Sequential intense dosedense epirubicin, pacifiaxei, and cyclophosphamide (iddEPC) and weekly pacitiaxel plus non-pegylated plosomal doxinuticin (PM), plus carboplatin (PMCb) in triple-negative BC (TNBC) (Figure 1). Overall, there was no difference in pathologic complete response (pCR, ypT0/is ypN0) rates [1]. Here, we analyzed pCR rates according to germline mutation status.

488

DNA analysis successful (n=914)

AUC, area under curve

Epirubicin 150 mg/ m², qʻ g/kg q3w (for 1y) ∭ Perti

80 mg/m², 1/m² q2 w

Paclitaxel 8 or 225 mg/t

OR* 3.26 (1.44-7.39); mt p=0.005 ## Overall | 100 |

uvant treatment with highest pCR rates achieved in the treatment of gBRCA1/2 TNBC should be further explored. Patients with gBRC41/2 mutations showed most benefit gBRC41/2 TNBC / PMCb group. The role of carboplatin for Mutations in further BC predisposition genes are unlikely to

HER2+

Exome analysis of oncogenic pathways and tumor mutational burden (TMB) in Triple Negative Breast Cancer (TNBC): Results of the Translational Biomarker Program of the neoadjuvant double-blind placebo controlled GeparNuevo trial

M AGO-B

GBG

TMB correlated with older age, higher mutation rates in *BRCA2, ARID1A*, and *TPE3*, and higher burden in variant signatures such as DDR, HRD, GFRs, APOBEC and Alexandrov signature 3 **(Figure 2)**.

Continuous TMB predicted pCR in univariate (OR=2.06, 95%-Ci: 1.33-3.20, 95%-Ci: 1.20 - 2.20, p=0.0019) and mutitivariate (OR=2.06, 95%-Ci: 1.33-3.20, p=0.0012) logistic regression models, but did not predict a duraturab effect. After dichotomization of TMB at the top terilie. 50 patients had high TMB and 29 of them (58%) achieved a pCR, while 99 had low TMB and only 38 of them (38%) had a pCR (univariate p=0.0242, mutitivariate p=0.0057) (**Figure 4**).

TMB low TMB high

80% 60% 50% 40% 30% 10%

pCR rate

CCQ+ 12/2

TA CANO

PAN PACA CASA

TCGA G9

868848860

Whole exome sequencing was conducted on patient-matched fresh-frozen core biopsies and blood samples with littlimina (n=149174), SNNs and incleis were called with Mutect pureCN was used for copy number calls. Mutational signatures were identified as described by Alexandrov et al².

P-values are from two-sample Willoxon calls, and from logistic regression models. Multivariate models included age, window, breast cancer staging, grading, stromat tumor infiltrating lymphocytes, and PD-L1 as covariates.

Nab-Pacittaxel Nab-Pacittaxel

Patients with triple-regative (Stage I-UI) primary breast cancer were randomized to receive anthracycline and team-based chemotherapy with or without the PD-LI inhibitor durvalumab. The window durvalumab. The colosed after an amendment. Data from G9 were compared to The Cancer Century Control Strain Strain primary similar genomic landscape was observed between G9 and TGCA with primary alterations in TP53, c-MYC, BRCA1, PIK3CA and PTEN (Figure 2). Median TMB was 1.52 mut/MB in G9 which is slightly lower than in TCGA TNBC. Surgery Sylvania Syl

Sign.: signature. Durva sign.: durvalumab-response related genes BRACA, WREZU, ARDCT/H. HRD Sign.: genes setted to HRD. DDR sign.: 36 genes without BRCA from DDR patiway. GFR sign.: growth factor receptor genes (ERF, FGFR, FGFR,

61 113 29 140 2 32 66 66 83

} p=0.0003 Durva sign.
HRD sign.
DDR sign.
GFR sign.

2

The main genetic alterations were in *TP53*, *c-MYC, PTEN*Results were comparable between G9 and TCGA
TMB may predict pCR in primary TNBC, but no
dependency on ICI treatment was found Loibl S et al. Annals Oncol 2019 Alexandrov LB et al, Nature 2013 Goodman AM et al. Mol Cancer Ther 2017

Final_GBG_ASR_2019.indd 26-27 03.02.20 15:34

Correlation of the tumor mutational burden with the composition of the immune cell subpopulations in peripheral blood of triple negative breast cancer patients undergoing neoadjuvant therapy with durvalumab - results from the prospectively randomized GeparNuevo trial

AGO-B Cepa

Background: The GeparNuevo trial is a randomized, double-blind, multi-center phase II trial of neoadjuvant therepsy in patients with early-stage triple negative breast cancer (TNBC) investigating the role of durvalumab, an anti-PD-L1 antibody, which blocks PD-L1 binding to PD1 and CD80 in addition to standard anthracycline/taxane based chemotherapy (Loibl S et al. JCO 2018; 36.15_suppl.104).

Aim: Determination whether there exists a link between the tumor mutational burden (TMB) and composition, frequency and function of blood immune cells in patients of the Geparlwevo trial as with the pathological complete response (pCR). See also perset 52476s. Exone analysis of oncogenic pathways and tumor mutational burden (TMB) in tiple-negative breast cancer (TMB): Results of the translational biomarker program of the neoadjuvant double-blind placebo controlled CeparNuevo trial.

ite		1	leist electric		cure	current evaluation		
patie		WIG	L India	TMB	ploc	blood monitoring		both
ď	otal patients	1,	174	149		120		101
Š	window treatment	+	117	101		63		53
	Window	Window treatment	Figure 1. Scheme of GeparNuevo treatment	heme of Ger	parNuevo tr	eatment	4	
	Ra	demak		Nab-Pac -Durvalumats	Clin	Kood - Survellenab	4	
	ndomization	Plecebo	Core biopsy	ub-fac +flacebo	ical response	ECM *Placebo	Surgery	
	2 we	2 weeks	12,	12 weeks	(8 weeks		
-	Blood T1	ă	Blood T2	<u> </u>	Blood T3		B cod T	7
i	Abs # Subpopulations and phe	n selbodii	sed for bio	subpopula	subpopulations and phenotype	henotype		
	(TruC tube)		surface staining	staining		intra	intracellular staining	guir
	CD3	gd TCR	CD45	Tim3	CD45	CD25	CD3z	
	CD16+56	CD56	CCR7	CXCR3	CTLA4	FoxP3	perforin	CTLA4
	CD45	C D4	CD4	CD4	CD4	CD4	CD4	00
Pe-Cy7	S 4	CD28	CD45RA	CCR6	CD19	CCR4	CD 56	
	CD 19	CD 16	CD38	CD57	LIR1	CD127	CD 19	CD19
4PC-H7	SGD8	CD8	CD8	CD8	CD8	CD45RO	CD8	CD8
BV421		CD45		CD45	PDL1	CD45	CD45	CD45
BV510			HLA-DR	PD1	PD1	HLA-DR		
BV605		CD3	CD3	CD3	CD3	CD3	CD3	CD3

Figure 3. Association of TMB with clinical uctione
Univariate logistic regression models for pathological complete response (PCR) from the dichotomized TMB. Shown are the odds ratios (PR) with 95% CI for the different subsets of patients.

N.

Figure 2. TMB of GeparNuevo patients and subcohorts

Subcohorts

Tunor hopsies were evaluated for tumor mutation burden (TMB). Shown are the Wisker plot of the whole that and off the patients who underward immune monitoring on blood and the p value of the Wilcoxon test. The line at 125 terpeeshis the median of the whole group that is used to dicholomize the patients.

0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 rho CD8 #= CD8 Tem= CD8 Teff= CD8 CD48RA= CD8 CD38= CD4 CD38=

Figure 4. TMB correlates with different blood parameters at excuritions. Correlation between continuous TMB and T cell-stated markers at recultionin was evaluated. Shown are the Spearman correlation cenficient (no) and its Skick; for selected variables having a significant correlation to TMB (if cell number / julbood; fem. Teffector memory; leff, effector memory; leff, effector reemory;

š ⊤ DP (%)-CD4 CTLA4 intra CD8 CD3z

Figure 5. TMB and T cells' blomarkers at recrultiment correlate with pCR interaction of dehotomized branchers and TMB wit pCR. Shown are the OR with 95% CI for the marking a significant p value in the Wald test (DP: CD CDB double positive; %, as % of PBMC; intracellular stain).

The median TMB in patients from the GeparNuevo trial is 1.52 mutMb, the patients with immunomonitoring are a representative subcohort
Patients with higher TMB have better pathological responses.
TMB negatively correlates with the absolute number of CD8* T cells, but positively with the percentages of memory colls.
Many T cell biomarkers interact with the TMB to predict pCR.
Biomarkers changes along treatment have opposite effects in the TMB dichotomized cohort, except for CD45RA CD8** T cells at endpoint (T4):
Changes in total population have the same role, but opposite effects when combined with CD38 or HLA-DR expression.

GBG

Comparison of an automated cartridge-based system for mRNA assessment with central immunohistochemistry in the

CHARITÉ

NAGO-B

503 of 509 (~599%) measurements of the Xper® Breast Cancer STRAT4* assay were performed successfully, with valid results. EH, PgR and HER2 revealed a high Kappa coefficient: 0.65 - 0.82, while Ki67 has a slightly lower Kappa with 0.37. Sensitivity, specificity and accuracy are in all cases se0%, except Ki67 specificity (30.5%), which could be explained with a low rate of right negative values (fig. 3). HER2 measurement delivered the highest number of positive predicted values (94.6 %), followed by ER (93.7%), Ki67 (86.7%) and PgR (82.2%). Figure 4 - 6 show, that negative mRNA values (NV) are widely distributed across IHC expression: for ER 1 - 10.0%, PgR 10 - 80%, Ki67 20 - 50%, Wift 2 events, distributed over IHC2+, ISH pos. and IHC 3+, HER2 measurement delivered the lowest number of false negative values (total NV = 402).

Mki67 dCt-Cut-Off = -4, Ki67 IHC-Cut-Off 10%, 20%.

PGR dCt-Cut-Off = -3.5, PgR IHC-Cut-Off = 1%, 10%;

Mki67/Ki67 Offs: ER pos. ≥1%; PgR pos

ESR1 dCt-Cut-Off = -1, ER IHC-Cut-Off = 1%, 10%;

use tumors with a tumor content ≥ 10% in a transfer macrodissected issue in a tube FFPE tysis & protein digestion

concordance
between IHC (ER,
PGR, K67, HER2)
and mRNA soore
Validation of Xpert®
Breast Cancer
STRA14 assay in a
clinical trial cohort
Denical trial cohort
IHC-cutoffs for ER,
PR, Ki-67

PGR dCt-Cut-Off = -3.5, PgR IHC-Cut-Off = 1%, 10% Mki67 dCt-Cut-Off = -4, Ki67 IHC-Cut-Off 10%, 21

Figure 5: Boxplots dCt values vs. centra pathology IHC. ERBB2 dCt-Cut-Off = -1.

03.02.20 15:34

Final_GBG_ASR_2019.indd 28-29

GBG

Impact of Chemotherapy-induced Ovarian Failure (CIOF) on Disease-free Survival (DFS) and Overall Survival (OS) in Young Women with Early Breast Cancer (EBC)

is have previously reported that the majority of young man experienced chemotherapy-induced ovarial lure after chemotherapy (CT) for EBC. Age. CT glamen, duration and density influenced the rate of DF.3 Moreover, nearly 70% of women regals memopeasal hormone levels of folidie-stimulating mannerapasal hormone levels of folidie-stimulating more (FSH) and estradiol (E2) within 2 years after of CT However, only less than one third maintain more (AMH).³ whole age as predicted by anti-Mullerial more (AMH).⁴ the part of Trainduced amenorines was sociated with a better DFS and OS in premonpaus sociated with a better DFS and OS in premonpaus and thens with EBC, regardless of the hormone-receptions.⁴ **Applications** **Applic

00% 90% 70% 70% 80% 10% 10%

0.81 [0.25-2.67]

0.729

91.8

1.47 [0.74-2.89] 2.69 [1.57-4.60]

0.272

- Jecuves: Distribution of E2 and FSH values at end of treat (FOT)
- (120.7) (120.7

HR 99%CI 1.00 0.67 [0.42-1.06] 0.64 [0.40-1.02] 0.50 [0.30-0.83] 2822 1233 1233 1233 1233 36 48 DFS, months 21 15 12 24 27 25 27 25 O soft-pessell molitoqorq

N AGO-B

#4042

Utility of the CPS+EG scoring system in triple-negative breast cancer treated with neoadjuvant chemotherapy

GBG

ents with residual stage I had a 5-year DFS of 77.5% (n=383). PS-S-EG groups (score IVI) nnon-PGN patients had a 5-year based on initial stage (CS+EG score > 3; 5-year DFS 61.4%). year DFS: 83.9% vs 48,7%) (Figure 4).

- Pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) is associated with superior disease free (PCR) and overal autwal (CS).

 This association is strongest in triple-negative breast cancer (TNBC):

 Post-neoadjuvant therapy has become a standard option for patients not achieving a pCR after NACT; especially in HFCR2 disease and TNBC, 2.

 The CPSEC system, based on pre-treatment clinical (CS) and post-treatment pathologic stage (PS) grade and estrogen receptor status, leads to a refined estimate of prognosis after NACT in all comers and HR-HHERC.45a.

 Here, we invostigate if CPS-EG scoring provides a superior estimate of prognosis in TNBC after NACT to select patients for post-neoadjuvant therapy.

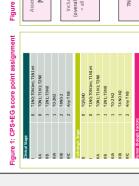
Figure. 3a: HER2-DFS stratified according to clinical stage, path.

Patients and Methods

In TNBC the CPS+EG score does not lead to a clinically useful better categorization of patients into distinct progressite groups beyond to RX and patients into distinct progressite groups beyond to RX and patients as subgroup not achieving a pCR, which might not be considered candidates for post-encodiuman stragges.

However, CPS+EG identifies a small subgroup of patients with TNBC and HER2-BC at high risk of recurrence despite a pCR. These are defined by G3 and clinical stage IIIBC lumours.

pre-treatment cl nodal status Tumor grade


5-year 95-y G 0.95 rie 95-y G 0.85 0.884 0.973 0.85 0.785 0.835 0.450 0.639 0.631 0.430 0.838 0.490 0.200 0.200 0.200 0.000 0.000

0852 0.882 0.882 0.862 0.750 0.663 0.753 0.566 0.753 0.566 0.376 0.376 0.376 0.378 0.425

0872 0872 0.721 0.708 0.593 0.494

(N ≥ 12) N ≥ 12) N

Trai design (1962) and the been treated within 9 prospective randomized neoadjuvant traits conducted by the German Breast Group (GBG) and the Arbeitspernenschaft Gynakologische Onkologie-Breast (AGO-B) study group until 2013. All traits investigated antitracycline and taxme-based chemotherapy regimens. The CPS-EG score was calculated as depicted in Figure 1. ER, PgR. HERZ and grade were assessed on pretreatment one biopses. For this analysis we only inducted patients with HERZ-regative disease. Excluded patients and reasons are summarized Figure 2. The primary goal was b investigate if CPS-EG scoring provides a superior estimate of prognosis in TNBC after NACT to select patients for post-neoadjuvant therapy.

Assessed for eligibili N=10526 NBC population N=1795

0 00 0,772 0890 0,372 0890 0,595 0.685 0,341 0.471 0,074 0.284 5-year 0 0 0 0.831 0.835 0.610 0.406 0.304 0 - 4 8 4 8 0

0.839 0.889 0.730 0.830 0.730 0.830 0.290 0.488 0.153 0.325 0.021 0.339

5-year 0.864 0.75 0.489 0.394 0.290 0.122 PS (N=1795) D (N=1795)

95% CI 0 0 0.734 0.848 0.752 0.844 0.594 0.684 0.466 0.635 0.261 0.433

CS 5-year (No. 1795) DVS rate* 0 0 1 0 0.791 IIIA 0.793 IIIB 0.545 IIIIB 0.545 IIIIB 0.547 IIIIC 0.542

88 9.0 274 28.2 288 29.7 236 23.2 71 7.3 10 November 2015 | 10 November 2 101 487 208 26 Description of the control of the co

Final_GBG_ASR_2019.indd 30-31 03.02.20 15:34

195P

Chemotherapy-induced anaemia in patients treated with dose-dense regimen: Results of the prospectively randomised anaemia substudy from the neoadjuvant GeparOcto study

MAGO-B GBG

ized N=125

up entangent a countries when the more representation and an administration of the manner and subjectives; median time to achieve Hbz1fg/dl; changes in iron parameters (serum ferritin and transferrin saturation (TSAT)) at baseline (BL) vs different time points (4, 8, 12, 16 weeks and end of chemotherapy (EOT); blood transfusion in both arms. Patients without Hb assessment after BL were counted as not achieved Hbz1fg/dl.

PM(Cb)

| Pacitaxel 80 mg/m² q/w (PM(Cb) arm) or 225 mg/m² q/w (IddEFD arm) |
| Epruboin 150 mg/m² q/w |
| PulD 20 mg/m² q/w |
TMBC	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 420 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulzzuma (80), 60 mg q/w				
Pulz	Pulz	Pulz	Pulz		
Pulz	Pulz	Pulz	Pulz	Pulz	
Pulz	Pulz	Pulz	Pulz	Pulz	
Pulz	Pulz	Pulz	Pulz	Pulz	Pulz
Pulz	Pulz	Pulz	Pulz	Pulz	Pulz
Pulz					
Pulz	Pul Patients planned, N=400 a=0.05, power 80% Patients enrolled, N=125 a=0.05, power 34% aemia episode: 2 applications of FCM 2 applications of PhCh				
• no supportive treatment
• oral iron or
• ESA or
• ESA + oral iron Eligibility criteria
Hs. 10g/dl
11\$AT \$2.0%
Serum ferritin < 300ng/ml
(amended to < 600ng/ml)
\$Traffication factors:
• tdGEO ws PM(Cb)
• parmed PhCh N=950 TNBC

0.634 201 (16.8-551) 9.5 (7.6-11.1) 9.6 (7.9-11.8) 199 (3.0-504) PhCh N=63 51 (81.0) 12 (19.0) Parameter
Continuous variables
Age (years)
median (range)
Hb (gid] at 1½ anaemia
episode
median (range)
Hb (gid] at 1¾ assessmen
before andomisation
median (range)
TSAT [%]
median (range)
TSAT [%]
median (range)
Gategoricat variables
Serum ferritin ≈300 ng/ml
Serum ferritin ≈300 ng/ml

• Overall, 40 (32.0%) patients (35.5% in FCM and 28.6% in PhCh arm; p=0.447) reached Hb level of ≥11g/dl at 6 weeks.

• Median time to achieve Hb≥1g/dl was 9.0 weeks (95%Cl 5.0—not reached) with FCM vs 10.6 weeks by PhCh (95%Cl 5.0–10.7 (35%Cl 0.67–2.03) (Fig. 3).

• The mean Hb changes at different time points vs baseline were comparable in both arms whereas the mean serum ferritin and TSAT changes were increased in FCM as compared with PhCh arm 17 patients received oral iron substitution, 8 ESA, 2 both, 7 other treatment and 18 did not receive any anaemia treatment.

• During anæmia therapy, blood transitusion was performed in 2 patients in the FCM and 5 in the PhCh arm (p=0.246) whereas after 6 weeks of therapy 5 patients in the FCM and one in PhCh arm received blood transitision (p=0.246) whereas after 6 weeks of therapy 5 patients in the FCM and one in PhCh arm received blood transitision.

Patients providing any Hb assessment up to 6 weeks after randomization N=42

Patients providing any Hb
-- assessment up to 6 weeks after
randomization N=39

Patients providing any Hb assessment after randomization N=62

PhCh N=63
- before amendment (N=39)
- after amendment (N=24)

patients reacned in of anaemia therapy, and TSAT levels the comparison to PhC

Risk factors for locoregional recurrence (LRR) after neoadjuvant chemotherapy:

N AGO-B

GBG

reference category 0.789 (0.58-1.08) 0.92 (0.68-1.25) reference category 1.32 (1.04-1.67) 1.97 (1.50-2.59) 2.72 (2.23-3.31) 1.33 (1.12-1.57) 5.99 (5.23-6.81) 7.55 (6.13-9.15) 10.46 (8.51-12.63) 14.41 (12.91-15.99) 7.82 (7.15-8.53) 11.28 (10.13-12.50) 8.45 (7.85-9.08) 12.00 (10.06-14.12) 6.75 (6.04-7.51) 11.18 (10.24-12.15) 9.36 (8.70-10.04) 5.47 (4.13-7.07) 8.69 (6.67-11.04) >50 ≤50 cT1-3 cT4a-d regative positive Ductal invasive Lobular invasive CHer A total of 10.075 women with primary BC and available following main study. GeparDuatro. GeparDuo. GeparDuo deparDuatro. GeparDuo GebarDuo GeparDuo ant chemotherapy (NACT) for BC me. This study aimed to evaluate the after NACT and to identify indepen

pCR patients HR (95 % CI) reference 1.01 (0.62-1.64) reference 0.78 (0.41-1.51) 4.07 (3.21-5.08) 9.52 (8.84-10.22) reference 123 (0.96-1.58) 2.05 (1.54-2.73) 2.77 (2.27-3.39) reference 1.39 (1.16-1.65) reference 1.13 (0.96-1.33) HR+/HER2-HR-/HER2+ HR-/HER2+ TNBC BCS Mastectomy G1-2 G3

PCR HR+ME/R2-HR-ME/R2+ HR-ME/R2+ TNBC S 2 2 3 p-valse p-0.039 p-0.001 Non pCR HR-HERZ-HR-HBRZ-TMC Nonp OR BCS matechny

60.0077 60.0077 60.0077 60.0077 60.0071 60.0071 60.0071 60.0071 60.0072 60.

reference category 1.06 (0.89-1.25) reference category 3.33 (2.60-4.28)

BCS Mastec S 26

p-value p-0.250 p-0.250 p-0.250

Age, clinical nodal status before NACT, tumor grade, pCR and predictors of LRR in multivariate analysis (Table 2).

Patients achieving a pCR have lower LRR rate compared to non-pCR. Patients steated with mastectomy and those with HR-HER2+ or TNBC subtypes had higher LRR rates at 5 years in non-pCR subgroup only (Figure 1).

TNBC subtypes were independent predictors of LRR whereas only cN+ showed a trend in predicting LRR in the pCR subgroup (Table 3). *After a median follow-up in the entire cohort of 67 months (range 0-215 months), 959 (9.5%) LRRs as first event were observed.

0.099 0.099 0.054 0.054 0.0971 0.371 0.371 0.089 0.089 0.089 0.089

Young age, node-positive and G3 tumors, non-pCR status, HER2+ and TNBC subtypes were found to significantly increase the risk of LRR as first event after NACT. Patients with HFLR2+ and TNBC not achieving pCR were at highest risk of LRR. Hence, there is a critical need to investigate better multimodality post-neoadjuvant therapies for this patients. (Pays RI. A Class of Wample Thea for Company the Cumuleive bridence of a Competing Rest. The Are Sail 1988 for 1441 Feb. 22 The 2P. Clay P.J. A Proportion Hazarb Model for the Solidishboron of a Competing Rest. is a Sail Assoc 1989 (2014). A Competing March Competing March Competing March Competing Sail 2013 (2015).

N (valid %) Parameter

Age, years	Median (range)	49 (21-80)	tumor grade	6	336
ᆫ	cT1	1195 (12.0)		62	5037
	cT2	6277 (62.8)		8	4279
	cT3	1425 (14.3)	BC subtypes	HR+/HER2-	3958
	cT4a-d	1102 (11.0)		HR+/HER2+	1458
ફ	cN0	5098 (51.6)		HR-/HER2+	986
	cN1	4263 (43.2)		TNBC	2229
	cN2	385 (3.9)	Surgery type	BCS	6577
	cN3	133 (1.3)		Mastectomy	3080
Histological type	Ductal invasive	8150 (82.2)	pCR (ypT0 ypN0)	8	8020
	Lobular invasive	1039 (10.5)		yes	2055
	other	720 (7.3)			

Final_GBG_ASR_2019.indd 32-33 03.02.20 15:35

Histological and epigenetic analyses of placenta tissue from breast cancer patients and healthy participants

GBG

BCP patients N=45, N (%) 4 (9.3) 39 (90.7)

Sign Signal of the state of the state of the signal of the

Breast cancer patients were older and delivered earlier than non-cancer patients between the same acceptance and page an

BCP patients
N (%) N=66
6 (9.1)
6 (9.1)
20 (43.9)
20 (45.5)
30 (45.5)
18 (28.1)
46 (71.9)
17 (1.5)
17 (1.5)
18 (28.8)
42 (64.6)
56 (90.3)

First timester
Second timester
Boah Ery Pikh neg
Er andra Pikh neg
Er andra Pikh neg
Hogstive
Negative
G
2
2
3
3
Duttel investive
Lotutel investive
Informativy
Other

Wean proliferation index was reduced (Fig.3, 36.3 v 58.0, p-0.001). Nuclear and cytoplasmic expression of the negative cell cycle regulator p27kp1 was reduced (mean IRS score 1.003) vs 4.34.8, p-0.001). No evidence of enhanced apoptosis vas found. Epigenetic analyses showed significant differences in mean cytosine methylation of EPC (68.4% vs 71.1%, p-0.05) and CYP-3A4 (87.8% vs 90.0%, p-0.01) genes (Fig.4). Altered methylation of CpC positions of LINE-1, IGF2H19, HSD1182, ER and P-gP genes were found. Placentas from breast cancer patients seem to be harmed in contrast to placentas from normal pregnancies, shown by morphologic abnormalities and a decreased proliferation index. Nevertheless, no increase of apoptotic cells could be demonstrated. Attered expression of efflux pumps or drug-metabolizing enzymes might be a reason for good fetal tolerability of chemotherapy during pregnancy as methylation patterns were changed in PgP and CyP-3A4 genes.

membranes in placentas from breast 1.9/1.8 vs 0.8/0.7, p<0.001).

staining revealed significant damage of troph cer patients compared to controls (Fig.2, mean

Function of placenta Stress m

Glucose transporters GLUT 1/3/4

002

A STATE OF THE STA

ABC transporters act as efflux pumps P-gP BCRP/ABCG2

6

Birth weight & development LINE-1 IGF2-H19 GR HSD1182

Pathologic complete response (pCR) and prognosis following neoadjuvant chemotherapy plus anti-HER2 therapy of HER2-positive early breast cancer (EBC) Loibl St., Unich MR, Buyse MR, Robidoux At, Glanni LF, Schneeweiss AF, Conte P7, Procat MR, Bonnefol HP, Jackisch CM, Nekljudova VV, Costantino JP1, Valagussa PP2, Neate CF3, Gelber RF4, Poncet CF5, Squifflet P9, Saad E9

GROUP GROUP MAGO-B

rement of pCR (breast and axilla) is strongly prognostic free (EFS) and overall survival (OS) in EBC [1], and of therapy improves long-term outcomes for patients positive disease not achieving pCR [2]. In to investigate prognostic factors for invasive ee survival (DFS) and OS among patients with and pCR following neoadjuvant systemic treatment of chemotherapy plus anti-HER2 therapy.

Overall, a median follow-up was 61 months for both IDFS and OS.

Of the 3.710 evaluable patients, 40.4% had a pCR and 59.6% did not (Tab. 1).

In pCR+ patients, cT and cN were significant independent prognostic factors for IDFS whereas only of was significant predictor for OS. In pCR- patients cT, cN and HR status were significant independent predictors for both IDFS and OS (Tab. 2).

Regardless of HR status, cT and cN, the 5y IDFS/OS rates were higher in pCR+ than pCR- patients. In most subsets with regards to HR and pCR- patients. In most subsets with regards to HR and pCR- status, cT and cA were independent prognostic factors for both IDFS and OS, including pCR+ patients (Fig. 1 and 2).

0.55 (0.34-0.87) 0.011 0.61 (0.36-1.03) 0.76 (0.47-1.22)

0.039

0.72 (0.53-0.98) 0.97 (0.73-1.29)

0.025

0.75 (0.58-0.96)

0.66 (0.55-0.79) 0.59 (0.50-0.68)

Hazard Ratio (95% CI)

Hazard Ratio (95% CI)

Hazard Ratio (95% CI)

2104

1216 (58%) 997 (62%)

738 (57%) 1475 (61%)

0.251 0.065

<0.001

0.005

1301 2409 1674 2036 0.87

71 2.N (reference) 212 98.8% T3-4.N+ vs T1-2.N+ 66 92.9% T1-2.N+ vs T1-2.N+ 200 95.1% T3-4.N+ vs T1-2.N+ 160 94.0%

ence) 156 90.1%, -2/N- 90 90.4%, 1-2/N- 260 97.4%, 1-2/N- 264 89.5%

0.56 0.49 0.27 horts

- 82

Final_GBG_ASR_2019.indd 34-35 03.02.20 15:35

Germline (g) *BRCA1/2* mutations (m) and hematological toxicities in patients with triple negative breast value (NACT)

M AGO-B GBG

Wildtype N=612

Neutropenia G3-4
Febrile neutropenia
Leucopenia G3-4
Anemia G3-4
Thrombopenia G3-4
Any toxicities G3-4
Frances exact test

139 PRCA17. (17.8%) evaluated patients had a gBRCA1/2m (1777 gBRCA17m, 33 gBRCA2m) (Figure 1). Median age was 48 years [21-78] (Table 1). 9 GRCA17. Indicators a gBRCA17. Indica acute hematogogical toxicities, especially patients with TNBC no had a higher mutation rate (about 15%) among breast necessurypes.² available data are discordant and the role of taxane has not sen analyzed so far, we investigated if patients with ARCATOR experienced a higher rate of hematological societies compared to wildtype during anthracycline/taxane-seed NACT and separately under taxane only.

Hematological toxicities under taxanes (Table 3):
• gBRCA1/2 mutational status was a signific hematological toxicities G3-4 under taxane tre OR=1.94, 99%C1 1.35-2.77, p<0.001; multivariate 1.55-5.45 p=0.001). idents and Methods.

airy TNBC and known gBRCA1/2m treated with axane-based NaCT in the Gepardunto³, and Gepardods's studies were included. Primary Gerax as foreseen for the intense desertense travel-cyclophosphamide (ideETC) arm in the BRCA2 mustions has been conducted in patients. If the BRCA2 mustions with gBRCA4 vs. the models have been adjusted for age, BMI and The ETC arm of Gepardods and in the ECT +1, and weekly pacitiaxel +1-everolimus arms of the final. The whole taxane treatment has been the analysis.

non TNBC n=2694 unknown gBRCA1/2m n=240 Patients with gBRCA1/2m n=209 gBRCA1 n=177 gBRCA2 n=33 Patients with known gBRCA1/2m status n=1171 Patient with wt gBRCA1/2 n=962 Secondary objectives were:

The rate of febrile neutropenia, leucopenia, anemia and thrombopenia G34 according to gBCA/1/2 mutation status.

The overall roxidiy rate G1-4 and G3-4 after cycle 1 according to gBRCA/1/2 mutation status.

The overall rate and the rate of each hematological toxicity G3-4 according to gBRCA/1/2 mutation status during the taxane part of chemotherapy.

Neutropenia G3.4
Febrile neutropenia
Leucopenia G3.4
Anemia G3.4
Thrombopenia G3.4
Any toxicities G1.4
Any toxicities G3.4
Tilanew acad rea

Overall, gBRCA1/2 mutation status is not associated with a significantly higher risk of severe hematological toxicities.
 Under taxane therapy, patients with gBRCA1/2 mutation demonstrate a higher rate of hematological toxicities G3-4, especially neutropenia, compared to wildtype patients, and should therefore be carefully monitored.

The street, Molt Carlo of the photopoint BRCA12 germine mutations among 802.

Engel of all Prevalence of pathopoint BRCA12 germine mutations among 802.

Engel of the street street, which is all prevalence has been considered by the common of the street of the street concerns the street of the street concerns and Servations in the Neodolpownt Triple-Nepative Breast Cannor Resource and Postorior and Postorior Resource in Pathon Street, and Complete Resource and December Free Survival in Triple-Nepative Breast Cannor Resource and December Free Survival in Triple-Nepative Breast Cannor Secondary Analysis of the Sequence of Intell MANA Onco, 2017 Secondary Analysis of the Sequence of Intell AMA ANA Onco, 2017 Secondary Analysis of Sequence of the Sequence of Intell AMA ANA Onco, 2017 Secondary Analysis of Sequence of the Sequence of Sequen

and Clinical Outcomes of Patients Treated with Preoperative Paclitaxel-based Ch Caveolin Gene Expression Predicts for Response 10)

We correlated tumor CAV12 RNA expression from available RNA-Seq data of HER2-negative patients (n=279) with CR2. DFS, and overall survival (OS) in the G7 trial (3) (Figure 1, CAV12) Log-transformed values were analyzed as a continuous variable and dichotomized about the mean for each gene. Multivariable logistic regression models were generated, and included age. T-stage. N-stage, tumor histologic grade (G3 vs G1-2), KiG7 (continuous), and histology (non-ductal vs ductal). The primary objective of the G7 clinical trial was pCR, defined as ypT0/ypN0.

Amb Nab-p The d Core biopsy [before study entry]

CAV1 OS - 4 64 36 - 36

Surgery

- 5 128 138

CAV2
hgh
low
hgh
ORNR(89%CI)
ORNR(89%CI)
00020 08(0302.29) 539 (175-16.47) 0.0
0007 096 0402.27) 070 (030-1.34) 0.1
0005 121 (0304.09) 0.47 (020-1.10) 0.0 CAV2 OS (240) tevirrus sert sesseib 10 ov hgs. 39 (2747-167) 0.0 (2747-1 CAV1 DFS (menths) CAV1
OS
Siene (months)
24 36 48 66
SS 49 32 4 48
73 70 48 4 28
73 70 48 2 29
SS 46 29 0 O (870) levivrue sent essesib CAV-2
TABC HR-positive
0.770 133(0-48-368) 0.87(028-170) 0.0169 44.0 (1.44-13.46) 1.00 (0.04-3.06) 0.0551 9.38 (1.13-77.75) 2.05 (0.92-4.59) 0.0168 43.06 (0.92-4.59) 0.016 CAV2 DFS 36 48 127 76 103 74 - 8 88 36 118 95 0.0440 tlime (m 136 136 0.0118 time (n 24 128 103 - 5 55 - 21 121 disease free survival (DFS) (20) levivnus lienevo CAN-1 HR-positive 0.09 (0.28-1,70) 1.14 (0.61-2.14) 1.80 (0.82-3.94)

CAV1 DFS

36 - 108 107

- 2 2 5

MAGO-B

lens in Early Stage Breast Cancer B Fleiper 4 Willer's F Marmet® M Unicht's Loib!

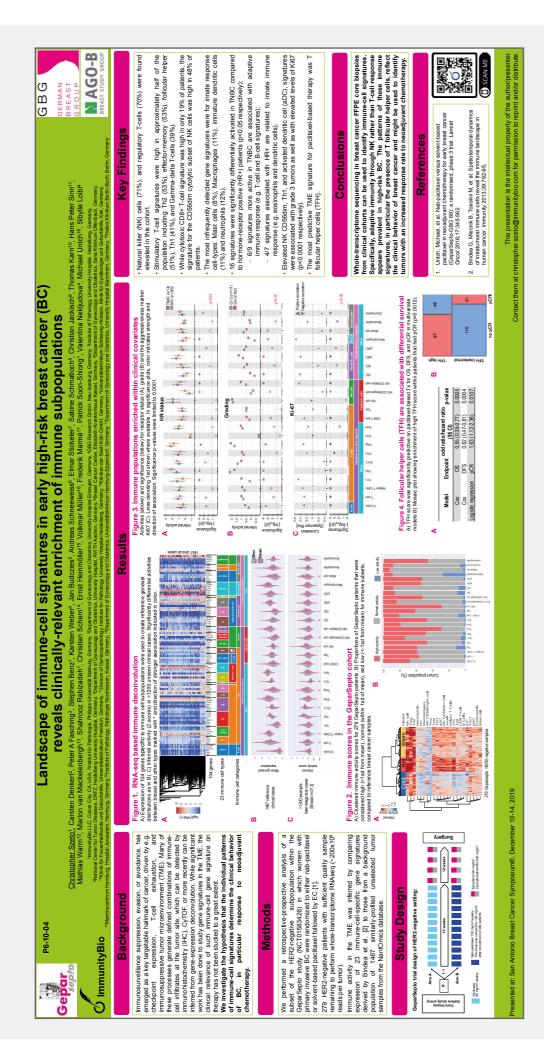
CAVI expression -2 -1 0 1 2 3 4 There was RNA-Seq data available for 279 out of 810 HER2-negative patients, of whom 28.5% were hormone receptor (HR)-negative (tiple negative.) TNBC). CAV1 and CAV2 expression values were directly correlated with each other (Pearson coefficient 0.452). (Figure 2)

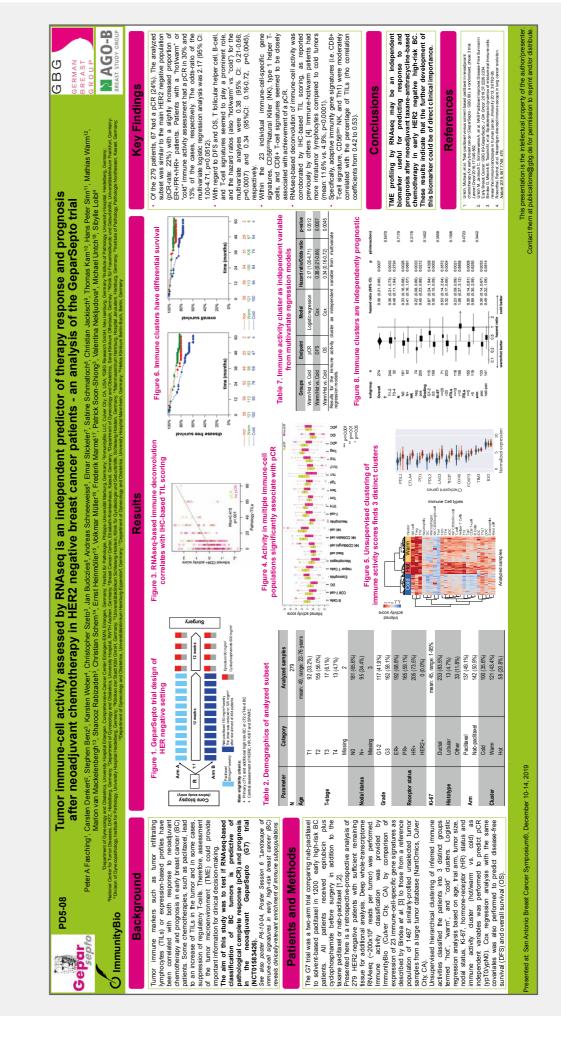
There was no difference in CAV1 expression between TNBC and HR-positive patients, but there was significant up-regulation of CAV2 expression (median) in TNBC patients (p=0.003) (Figure 3).

With regard to prognostic effects, CAV2 expression was significantly associated with worse DFS (Figure 4B) and OS for all patients (Figure 5B). In particular, high CAV2 expression was associated with poor prognosis for TNBC patients in multivariate modeling but not for HR-positive patients (Table 1).

Comparing the effects of CAV1/2 expression in the nab-pacitiaxel var high CAV1 expression was significantly associated with superior \$\frac{2}{2}\$ associated with improved odds ratio of obtaining pCR, but no significant infreadrons in hazard ratios for DFS and OS were detected (Table 2). On Kaplan. Meler analysis, high CAV1 and CAV2 were associated with worse DFS in the pacitiaxel-treated, but not the nab-pacitiaxel-treated groups (Figure 67). eptor (HR)-negative (triple negative,

CAV1 and CAV2 RNA expression are correlated in breast cancer.


The odds of obtaining pCR with nab-pacitiaxel treatment were improved for patients with high CAV1/2 expression.


Higher CAV2 expression is associated with worse DFS and OS in all patients.

For patients who receive pacilitaxel-based treatment, and CAV1/2 expression is associated with worse DFS and OS.

For patients who received nab-pacitiaxel-based treatment, no significant differences in DFS and OS based on CAV1/2 expression may offset the negative prognostic factor associated with higher CAV1/2 expression may offset the negative prognostic factor associated with higher CAV1/2 expression may offset the negative prognostic factor associated with higher CAV1/2 expression in patients treated with nab-pacilitaxel regiments by enhancing the efficacy of treatment, parhaps through increased nab-pacilitaxel endocytosis/transcytosis. These results are hypothesis generating and further data are needed.

Final_GBG_ASR_2019.indd 36-37 03.02.20 15:35

Final_GBG_ASR_2019.indd 38-39 03.02.20 15:35

1 /1

40 l

New Study Concepts

GBG 100: APPALACHES	
Interview with Dr. Mattea Reinisch	42
GBG 101: TAXIS	
Interview with Prof. Dr. Jörg Heil	44
GBG 102: SASCIA	
Interview with Prof. Dr. Frederik Marmé	46

Final_GBG_ASR_2019.indd 40-41 03.02.20 15:35

Interview with Dr. Mattea Reinisch, coordinating investigator of the APPALACHES trial in Germany

A Phase II study of Adjuvant PALbociclib as an Alternative to CHemotherapy in Elderly patientS with high-risk ER+/HER2- early breast cancer (APPALACHES)

APPALACHES (EORTC 1745 ETF BCG) is a two-arm, open-label, multicenter, randomized phase II study in elderly patients with stage II/III, estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2-) early breast cancer for whom treatment with chemotherapy is indicated.

Primary objective: to assess the efficacy of the combination of at least 5 year endocrine therapy and 2 years of palbociclib as adjuvant systemic treatment instead of adjuvant chemotherapy followed by endocrine therapy in older patients with stage II-III ER+/HER2- early breast cancer.

1. What are the advantages of combining CDK4/6 inhibitors with endocrine therapy in patients with ER+ / HER2- breast cancer?

CDK4/6 inhibitors have fundamentally changed the therapy landscape of patients with advanced or metastatic hormone receptor (HR)-positive breast cancer. For example, the results from PALOMA-1 and PALOMA-2 trials demonstrated a significant improvement of progression-free survival (PFS) in patients receiving palbociclib plus letrozole compared with patients receiving letrozole alone. Based on these findings, the FDA

and the EMA have approved the use of palbociclip in combination with letrozole for the treatment of postmenopausal women with ER-positive/HER2negative advanced breast cancer as initial endocrine-based therapy for their metastatic disease. Recently, a significant benefit of CDK4/6 inhibitors on overall survival (OS) for patients with HR-positive/HER2-negative advanced breast cancer has been demonstrated (MONALEESA-3 and 7 and MONARCH 2). Therefore, the combination of CDK4/6 inhibitors with endocrine therapy could be a new standard therapy in this group of patients with an advantage in all subgroups. Furthermore, quality of life (QoL) substudies which accompanied the phase III studies (PALOMA, MONALEESA and MONARCH) showed that the addition of the CDK 4/6 inhibitors do not impair the QoL of the patients.

2. Could you further discuss the use of palbociclib in the treatment of advanced or metastatic ER+/HER2- breast cancer?

For many doctors and patients, OS is the most important endpoint. Therefore, we are happy that recent data from MONALEESA-3 plus MONALEESA-7 trials investigating the efficacy of ribociclib plus fulvestrant as well as from MONARCH 2 study evaluating abemaciclib plus fulvestrant for treatment of advanced or metastatic breast cancer has reported a significant improvement of this endpoint. Hence, these results provide more evidence for making a confident treatment choice in both, the first and second-line settings. Safety profiles in these studies were consistent with observations from previous clinical trials. The visceral crisis with an imminent organ failure is the only one reason to start with chemotherapy instead. However, patients with visceral metastasis also benefit from the use of CDK 4/6 inhibitors. The combination of palbociclib and adjuvant endocrine therapy could therefore be an alternative to adjuvant chemotherapy with comparable efficacy and less toxicity in older patients with high-risk ER+/HER2- early breast cancer.

3. What is the risk-benefit assessment for APPALACHES trial?

APPALACHES study will include patients ≥70 years old with a high risk of relapse in case of inadequate treatment. There is no published data documenting the tolerability of two years of palbociclib among older patients in the adjuvant setting. Therefore, a safety interim analysis will be conducted based on treatment discontinuation rate in the experimental arm. A risk of undertreatment for patients only being treated according to their chronological age should also be taken into consideration. Furthermore, recent data from the phase II CORALLEEN trial investigating letrozol plus ribociclib as neoadjuvant treatment for postmenopausal luminal B/HER2-negative breast cancer patients presented at the SABCS 2019 support the potential value of CDK4/6 inhibitors to help de-escalate chemotherapy in high-risk breast cancer. A significant risk of toxicity is expected in the control group with adjuvant chemotherapy that can be mitigated by the systematic use of granulocyte-colony stimulating factor (G-CSF) or Granulocyte-Macrophage

Colony Stimulating Factor (GM-CSF) after each cycle of chemotherapy. In addition, the APPALACHES study offers a new and modern treatment approach in this hard to treat cohort of breast cancer patients.

4. Is there any way to predict which patients will benefit from targeted therapies with CDK4/6 inhibitors?

As far as we know, attempts to identify molecular biomarkers that predict response or resistance to CDK4/6 inhibitors in breast cancers have failed to identify clear candidates. More recently, analysis of circulating cell-free DNA samples from MONALEESA-2 study showed negative prognostic implications of PIK3CA and TP53 mutations in patients with advanced ER-positive breast cancer. As older patients have a higher risk of adverse events when receiving adjuvant chemotherapy compared to younger patients, the APPALACHES translational research program aims to evaluate biomarkers of aging during treatment and their correlation with treatment-related toxicity.

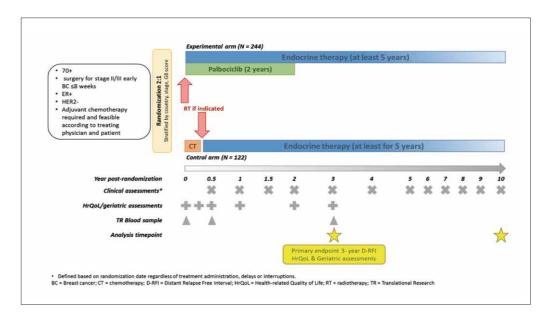


Figure 1: Study design of the APPALACHES study

Final_GBG_ASR_2019.indd 42-43 03.02.20 15:3

Annual Scientific Report 2019 | New Study Concepts _______ 45

Interview with Prof. Dr. Jörg Heil, coordinating investigator of the TAXIS trial in Germany

Tailored AXIllary Surgery with or without axillary lymph node dissection followed by radiotherapy in patients with clinically node-positive breast cancer (TAXIS)

TAXIS (SAKK 23/16/IBCSG 57-18/ABCSG-53)

is an international, multicenter, randomized phase III trial to evaluate the optimal treatment for breast cancer patients with confirmed nodal disease at first diagnosis in terms of surgery and radiotherapy. In particular, it will investigate the value of tailored axillary surgery (TAS), a new technique that aims at selectively removing the positive lymph nodes – either before any systemic treatment or after neoadjuvant systemic treatment.

Primary objective: to show that TAS and axillary radiotherapy (RT) is non-inferior to axillary lymph node dissection (ALND) in terms of disease-free survival of breast cancer patients with positive nodes at first presentation.

1. What is the rationale of TAXIS trial for nodepositive breast cancer patients in the era of effective systemic therapy and extended regional nodal irradiation?

In mean about 10 non-cancerous lymph nodes are removed while performing a classical axillary lymph node dissection in node positive patients. There is supporting evidence that the removal of non-cancerous lymph nodes during a classical axillary lymph node dissection is without benefit

for the patient. Moreover, there is an increasing body of literature showing that leaving some cancerous lymph nodes behind will not decrease survival of the patients if adequate or even escalated adjuvant treatment regimes will be applied. The rationale of TAXIS is that surgery is efficient in macroscopic disease (what will be adequately removed by surgery) and radiotherapy is efficient in microscopic disease.

2. What needs special attention in the design of the TAXIS trial?

Special attention needs to be put on the fact that intensive collaboration between breast diagnostics, breast surgery and radiation oncology is necessary. Nodal status has to be defined exactly by imaging before treatment, clip marker placed and selectively removed by surgery. Moreover the trial design is "pragmatic", meaning that many routine procedures may be performed on every day basis.

3. What are the future perspectives for treatment of breast cancer patients with confirmed nodal disease at first diagnosis in terms of surgery and radiotherapy?

The majority of patients with confirmed nodal disease have 1-2 metastatic lymph nodes. For these patients we might assume that surgery can be more targeted and less invasive with adapted radiotherapy concepts.

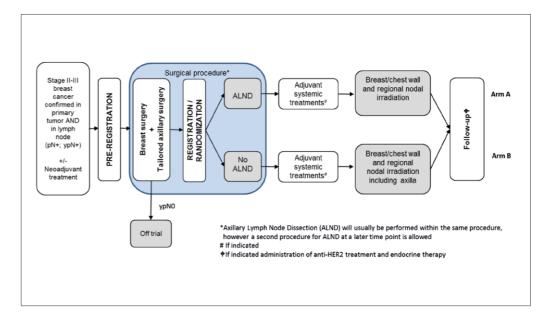


Figure 1: Study design of the TAXIS study

Final_GBG_ASR_2019.indd 44-45 03.02.20 15:35

Annual Scientific Report 2019 New Study Concepts ______

Prof. Dr. Frederik Marmé University Hospital Mannheim

Interview with Prof. Dr. Frederik Marmé, coordinating investigator of the SASCIA trial in Germany

Phase III postneoadjuvant study evaluating Sacituzumab Govitecan, an Antibody Drug Conjugate in primary HER2-negative breast cancer patients with high relapse risk after standard neoadjuvant treatment - SASCIA

SASCIA is a prospective, multicenter, randomized, open-label, parallel group, phase III study to evaluate the efficacy and safety of postneoadjuvant treatment with Sacituzumab govitecan compared to treatment of physician's choice with capecitabine or platinum-based chemotherapy or observation in primary HER2-negative breast cancer patients with high relapse risk after standard neoadjuvant treatment.

Primary objective: to compare invasive disease free survival (iDFS) between patients treated with sacituzumab govitecan versus treatment of physician's choice.

1. Why is the postneoadjuvant approach in breast cancer patients so important?

The postneoadjuvant approach uses one of the most compelling advantages of neoadjuvant chemotherapy, which is the opportunity to observe response to therapy. It thereby allows identifying patients with an extremely good prognosis, for whom treatment might eventually be de-escalated, but also those with an extremely poor prognosis who require further novel therapeutic strategies. Thus, the postneoadjuvant approach offers therapy only to those who could really benefit, avoiding overtreatment. In turn, this provides an opportunity to design randomized

clinical trials with a limited number of patients and therefore reaching the endpoints in a shorter period of time compared to the adjuvant setting.

2. Sacituzumab govitecan is a new antibodydrug conjugate, can you tell us what is the peculiarity of using such a drug?

In general, antibody-drug conjugates (ADCs) are a new class of targeted biopharmaceutical drugs that combine monoclonal antibodies specific to surface antigens present on tumor cells with highly potent anti-cancer agents linked via a chemical linker. This allows delivering of cytotoxic agents in a targeted fashion into tumor cells whilst sparing systemic side effects of chemotherapy. Sacituzumab govitecan as an ADC is composed of the active metabolite of irinotecan, SN-38, linked with a therapeutic monoclonal antibody targeted against TROP-2, a self-surface glycoprotein that is differentially expressed on tumor cells with the highest expression in triple-negative and luminal breast cancer cells. In contrast, the TROP-2 expression is low in normal cells. The Sacituzumab govitecan has been demonstrated to provide compelling activity against both triple-negative and luminal breast cancer in heavily pretreated patient in clinical trials - even after immunotherapy and CDK4/6 inhibitors.

3. What is the study design of the SASCIA trial?

In the SASCIA, HER-2-negative patients at high risk of relapse after neoadjuvant chemotherapy will be randomized to either 8 cycles of sacituzumab govitecan or treatment of physician's choice, which can consist of 8 cycles of capecitabine or platinum-based chemotherapy as well as observation only. In addition, patients with ER-positive disease will receive standard of care endocrine therapy. The trial includes both, ER-negative (TNBC) as well as ER-positive patients. TNBC patients will be included on the basis of not having achieved a pCR whereas the ER-positive patients must not have achieved a pCR and in addition need to have a CPS+EG score of \geq 3 or 2 with ypN+.

4. Are you going to investigate the tumor expression of potential biomarkers that may predict response to Sacituzumab govitecan?

Nowadays it is impossible to conduct clinical trials including targeted agents like ADCs without investigating potential predictive factors. Within the SASCIA we will investigate the role of TROP-2 expression as well as others mRNA and protein based biomarkers as potential predictive factors. In addition, the role of circulating tumor DNA (ctDNA) as an early response marker as well as polymorphisms which could predict efficacy and toxicity will be investigated to help to tailor this therapy further.

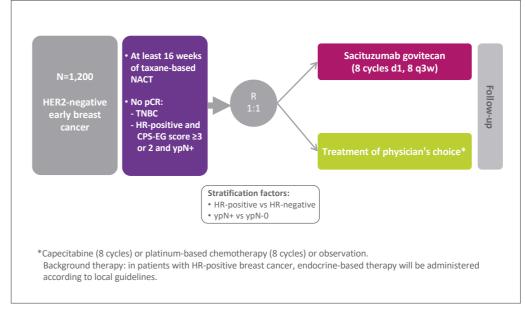
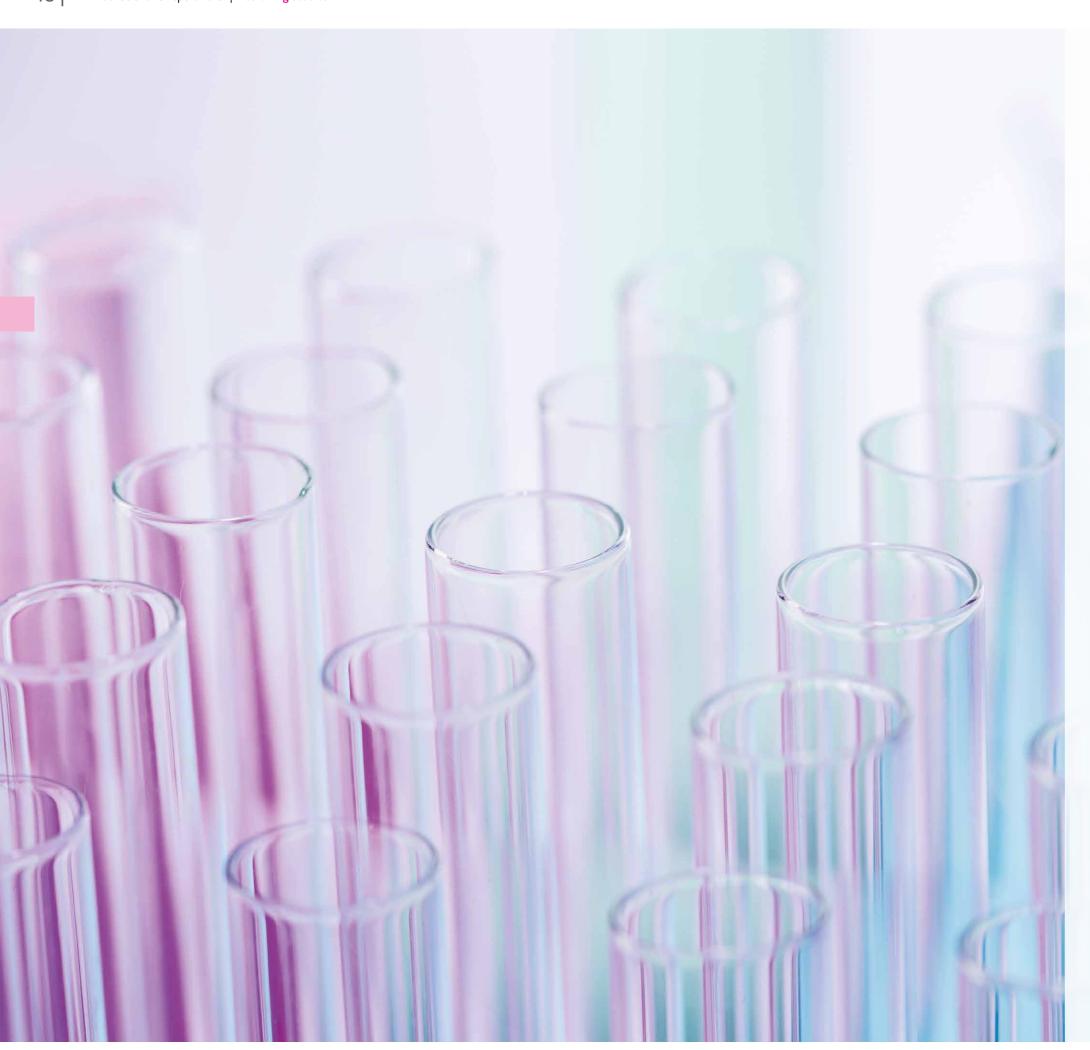



Figure 1: Study design of the SASCIA study

Final_GBG_ASR_2019.indd 46-47 03.02.20 15:35

Recruiting Studies

GBG 98: ALEXANDRA/Impassion030	50
GBG 91: TAMENDOX	52
GBG 96: GeparDouze	55
GBG 97: AMICA	58
GBG 93: PADMA	60
GBG 94: PATINA	63
GBG 29: Breast Cancer in Pregnancy (BCP)	66
GBG 79: Brain Metastases in Breast Cancer (BMBC)	69
GBG 86: DESIREE	72
GBG 85: AURORA	74

Final_GBG_ASR_2019.indd 48-49 03.02.20 15:35

CONTACT:

Dr. Ioannis Gkantiragas Clinical Project Management impassion030@GBG.de

GBG 98: ALEXANDRA/Impassion030

A Phase III, Multicenter, Randomized, Openlabel Study Comparing Atezolizumab (Anti PD-L1 Antibody) In Combination With Adjuvant Anthracycline/Taxane-Based Chemotherapy Versus Chemotherapy Alone In Patients With Operable Triple-Negative Breast Cancer

NCT03498716

ALEXANDRA/Impassion030 (BIG 16-05/AFT-27/WO39391) is an international, multicenter, randomized, open-label, controlled phase III trial that will recruit approximately 2,300 patients at approximately 370-450 sites globally within 4 years.

Background

Patients with TNBCs exhibit a poor clinical outcome, generally with rapid progression and a shorter time to local and distant relapse (Dent R et al. Clin Cancer Res 2007). Three-year invasive disease-free survival (iDFS) rates of 81 % have been reported for patients with TNBC who have received adjuvant anthracycline/taxane therapy (Sparano JA et al. J Clin Oncol 2015). Upon systemic relapse, patients with metastatic TNBC have poor outcomes, with rapid progression and decreased overall survival (OS) (Kassam F et al. Clin Breast Cancer 2009). Because TNBC does not currently have specific targeted agents approved for use in the early setting it is treated primarily with chemotherapy.

Atezolizumab is a humanized immunoglobulin (Ig) G1 monoclonal antibody that targets PD-L1 and inhibits the interaction between PD-L1 and its receptors, PD-1 and B7-1 (also known as CD80), both of which function as inhibitory receptors expressed on T cells. Therapeutic blockade of PD-L1 binding by atezolizumab has been shown to enhance the magnitude and quality of tumor-specific T-cell responses, resulting in an improved anti-tumor activity (Fehrenbacher et al. 2016; Rosenberg et al. 2016). TNBC may be more immunogenic compare to other breast cancer subtypes and promising clinical activity has been reported with atezolizumab in phase I/Ib metastatic TNBC trials (Adams S et al JAMA Oncol 2019). Furthermore, the results of the randomized phase III IMpassion130 study demonstrated enhanced anti-tumor activity when atezolizumab was co-administered with chemotherapy in the first line metastatic setting, with benefit mainly observed in PD-L-positive cohort.

Atezolizumab has been generally well tolerated. Atezolizumab in combination with taxanes (including paclitaxel and nab-paclitaxel) has shown toxicities similar to those experienced with paclitaxel or nab-paclitaxel alone and have generally been manageable. The benefit-risk ratio for atezolizumab in combination with paclitaxel followed by dose-dense doxorubicin or epirubicin (investigator's choice) and cyclophosphamide is expected to be acceptable in this setting.

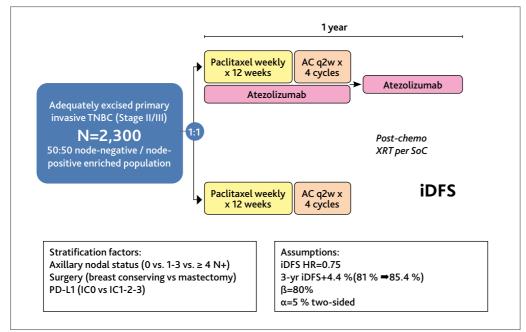


Figure1: Study design of the ALEXANDRA/IMpassion030 study

Study design and objectives:

ALEXANDRA/Impassion030 primarily aims to evaluate the efficacy, safety, and pharmacokinetic profile of adjuvant atezolizumab plus standard chemotherapy versus chemotherapy alone in early TNBC. Patients with operable stage II or III TNBC, confirmed by central pathology review, will be randomized to receive either adjuvant atezolizumab in combination with paclitaxel followed by atezolizumab, dosedense doxorubicin or epirubicin (investigator's choice), and cyclophosphamide (atezolizumab+T-AC/EC) or paclitaxel followed by dosedense doxorubicin or epirubicin (investigator's choice) and cyclophosphamide alone (T-AC/EC). Patients are stratified by type of surgery, nodal status, and centrally assessed PD-L1 status. Adjuvant treatment will consist of weekly paclitaxel 80 mg/m² for 12 weeks followed by dose dense anthracycline (epirubicin 90 mg/m2 or doxorubicin 60 mg/m²) and cyclophosphamide 600 mg/m² for 4 doses every 2 weeks or the same chemotherapy regimen (T-AC/EC) given concomitantly with atezolizumab 840 mg every 2 weeks followed by maintenance atezolizumab 1,200 mg every 3 weeks until completion of 1 year of atezolizumab. The primary endpoint is to evaluate iDFS of adjuvant atezolizumab+T-AC/EC compared with T-AC/EC alone in patients

with TNBC. Secondary endpoints include iDFS by PD-L1 and lymph node status, overall survival, safety, patient functioning and health related quality of life (HRQoL). Furthermore, tumor tissue and blood samples will be collected for biomarker research.

Study report:

ALEXANDRA/Impassion030 worldwide recruitment started in July 2018 and in Germany in June 2019, respectively. As of 31st December 2019, there are 5 patients enrolled in the study at the German sites [1-2]. Enrollment is targeted to be completed at QIV 2021.

Publications:

- McArthur HL, Ignatiadis M, Guillaume S et al. ALEXANDRA/IMpassion030: A phase III study of standard adjuvant chemotherapy with or without atezolizumab in early-stage triple negative breast cancer. J Clin Oncol 2019; 37, no.15_suppl, TPS598.
- Ignatiadis M, McArthur HL, Bailey A et al. ALEXANDRA/IMpassion030: A phase III study of standard adjuvant chemotherapy with or without atezolizumab in early stage triple negative breast cancer. Ann Oncol 2019; Volume 30, Issue Supplement_5, 289TiP.

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the study by recruitment of the patients and by providing biomaterial in a timely manner.

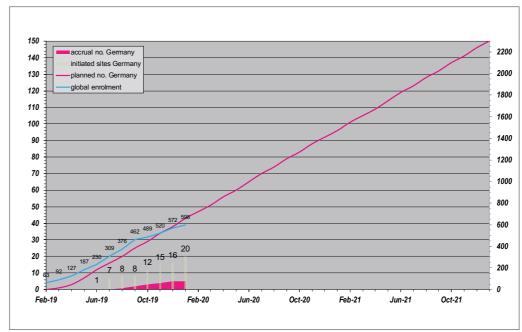


Figure 2: ALEXANDRA/Impassion030 recruitment as of 31st December 2019

COLLABORATING STUDY GROUPS:

GBG GERMAN BREAST GROUP

SPONSOR:

Hoffmann-La Roche

STUDY CHAIR GERMANY: Prof. Dr. Marcus Schmidt Universitätsfrauenklinik Mainz

inal_GBG_ASR_2019.indd 50-51 03.02.20 15:35

CONTACT:

Konstantin Reißmüller Clinical Project Management tamendox@GBG.de

GBG 91: TAMENDOX

Genotype and phenotype guided supplementation of TAMoxifen standard therapy with ENDOXifen in breast cancer patients

NCT03931928

TAMENDOX (IKP275) is a prospective, multicenter, single-blind, three treatment arms, placebo-controlled, pharmacogenetics/pharmacokinetic phase II study that will recruit 504 patients from approximately 40 sites in Germany.

Background

The selective estrogen receptor modulator tamoxifen is a non-steroidal antiestrogen which was approved for the treatment of hormonereceptor positive breast cancer in the 1970s. Today tamoxifen is the sole labelled treatment for premenopausal patients but postmenopausal patients have the choice of an aromatase inhibitor (AI) for the inhibition of peripheral estrogen synthesis. Despite widespread use of Als in postmenopausal patients and high-risk premenopausal patients (in combination with ovarian function suppression), tamoxifen remains a standard-of-care due to its high efficacy, tolerable toxicity profile and potential AI contraindications. While adjuvant endocrine therapy with tamoxifen reduces recurrences risk by half, approximately one third of patients will suffer from disease relapse (Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Lancet 2011).

By integrating the new knowledge of the variable tamoxifen bioactivation into an individualized tamoxifen treatment scheme, improved efficacy could be gained by the supplementation of standard tamoxifen with individualized doses of (Z)-endoxifen (Z-4-hydroxy-N-desmethyltamoxifen), the major active metabolite of tamoxifen. Of note, the formation of (Z)endoxifen is mainly catalyzed by the highly polymorphic CYP2D6 enzyme and depends on genetic variation of the encoding gene. About 8 % of the European population are CYP2D6 poor metabolizers (PM) due to the lack of functional alleles; heterozygous non-functional allele carriers and those homozygous for reduced-function alleles are termed intermediate metabolizers (IM) and make up ~40 % (Saladores et al. Expert Rev Mol Diagn 2013; Zanger et al. Pharmacol Ther 2013).

Independent clinical studies demonstrated that genetically determined low (Z)-endoxifen levels predict higher relapse rates in pre- and postmenopausal women (Madlensky et al. Clin Pharmacol Ther 2011; Saladores et al. Pharmacogenomics J 2015; Helland et al. Breast Cancer Res 2017). The available evidence

has recently been addressed by the Clinical Pharmacogenetics Implementation Consortium (CPIC®) (Goetz et al. Clin Pharmacol Ther 2018). The concept TAMENDOX study is based on a different novel approach which pursues the supplementation of standard adjuvant tamoxifen (20mg/d) with only low doses of (Z)endoxifen (up to 3 mg/d). In collaboration with Bayer, the doses used in this study have been calculated and validated by physiology-based pharmacokinetic (PBPK) modeling (Dickschen et al. Front Pharmacol 2012; Dickschen et al. Springerplus 2014). (Z)-endoxifen concentrations as found in normal metabolizers (EM) can be attained by IM and PM patients in this way. Evidence from in vitro modeling experiments of a premenopausal setting have already demonstrated that breast cancer cell killing can be improved by adding endoxifen to standard tamoxifen (Maximov et al. J Natl Cancer Inst 2014).

(Z)-Endoxifen is the major active metabolite of tamoxifen with an approximately 100 times higher affinity to the estrogen receptor α (ER- α) than tamoxifen itself. The primary pharmacodynamic mode of action is the antagonization of estrogen-bound ER, leading to the inhibition of estrogen-dependent genomic signalling and inhibition of tumor cell proliferation. A direct effect on the ER in humans has been

demonstrated by PET/CT imaging in a phase I trial of (Z)-endoxifen dose escalation (40-300mg for 28 days) in patients with refractory ER-positive solid tumors, including breast: an average decline of 33 % radioactive-liganded ER has been found upon (Z)-endoxifen hydrochloride administration compared to baseline. These findings supported the strong binding of endoxifen to the ER and the feasibility of PET-based imaging as a pharmacodynamic biomarker for (Z)-endoxifen/ER binding in vivo. Tamoxifen remains an important endocrine treatment option for premenopausal patients and those postmenopausal patients with contraindications for AI. Nonetheless, the high long-term relapse rate presents a severe limitation in current treatment. Compromised bioactivation of tamoxifen to its active metabolite (Z)-endoxifen in patients with reduced CYP2D6 activity likely contributes to this limitation, as a 2-fold and 1.4-fold increased risk for disease recurrence for PM and IM patients compared to EM patients has been observed. Thus, effective therapeutic (Z)-endoxifen levels can be achieved by supplementation of standard tamoxifen therapy with a low dose of (Z)-

The TAMENDOX trial is designed to show that (Z)-endoxifen supplementation in IM and PM patients will increase their steady state plasma

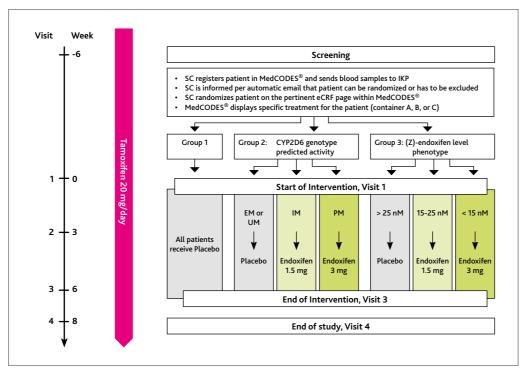


Figure 1: TAMENDOX study design

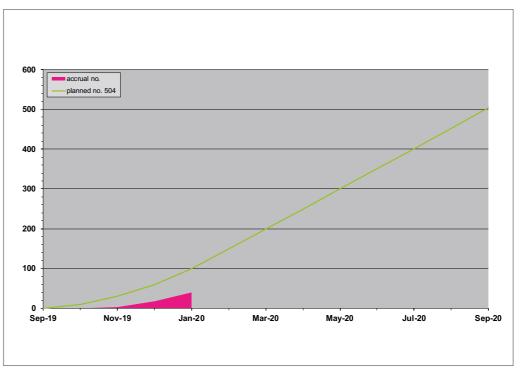


Figure 2: TAMENDOX recruitment as of 31st December 2019

Final_GBG_ASR_2019.indd 52-53 03.02.20 15:

COLLABORATING STUDY GROUPS:

SPONSOR:

Robert Bosch Gesellschaft für Medizinische Forschung mbH

COORDINATING
INVESTIGATOR:
Prof. Dr. Matthias Schwab
Dr. Margarete FischerBosch-Institut für Klinische
Pharmakologie, Stuttgart

concentrations of (Z)-endoxifen to the level found in patients without compromised metabolism, i.e. EM or ultrarapid metabolizers (UM). The trial is not designed to evaluate outcome measures of (Z)-endoxifen supplementation in tamoxifen treated patients.

Study design and objectives

TAMENDOX aims to evaluate the supplementation of tamoxifen with low dose (Z)-endoxifen to overcome the impaired bioactivation of tamoxifen to its active metabolite (Z)-endoxifen in patients with compromised CYP2D6 activity. Pre- and postmenopausal women with ductal carcinoma in situ (DCIS) or Stage I, IIA, IIB or IIIA invasive BC who have received at least three months standard tamoxifen treatment before baseline visit are eligible.

Tamoxifen treatment (20 mg/day) for at least three months in premenopausal and postmenopausal patients is mandatory prior to the start of the study, and will be continued during intervention period without change of dosage. During the intervention, a daily oral dose of (Z)endoxifen or placebo will be given according to CYP2D6 genotype or (Z)-endoxifen plasma concentrations (phenotype): group 1 (control group) will receive placebo independent of CYP2D6 genotype or (Z)-endoxifen plasma concentration; group 2 will receive (Z)-endoxifen dosed according to CYP2D6 "genotype" (i.e. genotype predicted IM or PM activity) or placebo (genotype predicted EM / UM), and group 3 will receive (Z)-endoxifen dosed according to (Z)endoxifen steady state plasma concentrations (phenotype) at screening (i.e. ≤ 15 nM or > 15 and ≤ 25 nM) under tamoxifen treatment with 20 mg/day or placebo (> 25 nM). The intervention period will be 6 weeks to assure steady-state levels.

Primary objective is to increase (Z)-endoxifen steady-state concentrations in patients with

compromised CYP2D6 activity to levels observed in patients with full CYP2D6 activity. The target concentration is > 32 nM.

Secondary objectives are 1) to increase (Z)endoxifen steady state concentrations in patients with CYP2D6 genotype predicted PM activity to levels observed in patients with full CYP2D6 activity by supplementation with 3 mg/ day (Z)-endoxifen (> 32 nM); 2) to increase (Z)endoxifen steady state concentrations in patients with CYP2D6 genotype predicted IM activity to levels observed in patients with full CYP2D6 activity by supplementation with 1.5 mg/day (Z)-endoxifen (> 32 nM); 3) to increase (Z)-endoxifen steady state concentrations in patients with basal (Z)-endoxifen plasma levels ≤ 15 nM to levels observed in patients with full CYP2D6 activity by supplementation with 3 mg/day (Z)-endoxifen (> 32 nM); 4) to increase (Z)-endoxifen steady state concentrations in patients with basal (Z)endoxifen plasma levels > 15 nM and ≤ 25 nM to levels observed in patients with full CYP2D6 activity by supplementation with 1.5 mg/day (Z)-endoxifen (> 32 nM); 5) to assess safety of low dose (Z)-endoxifen supplementation; 6) to assess and compare steady state plasma levels of tamoxifen, desmethyltamoxifen, 4-hydroxtamoxifen, and possible other tamoxifen metabolites between the intervention groups and control group.

Study report:

The TAMENDOX study started recruitment on 4th of September 2019 and the first patient was randomized on 1st of October 2019. As of 31st December 2019, there are 40 patients enrolled in the study. The duration of the total study period from inclusion (screening visit) until end of study (visit 4) will be up to 14 weeks per patient. Patient recruitment is anticipated to last one year.

GBG 96: GeparDouze

A randomized, double-blind, phase III clinical trial of neoadjuvant chemotherapy with atezolizumab or placebo in patients with triplenegative breast cancer followed by adjuvant continuation of atezolizumab or placebo

NCT03281954

GeparDouze (NSABP B-59) is an international, multicenter, prospective, randomized, doubleblind, phase III trial that will recruit 1,520 patients from up to 300 sites in approximately 11 countries within about 38 months.

Background

Triple-negative breast cancer (TNBC) is associated with relatively higher pathologic complete response (pCR) rate following neoadjuvant chemotherapy (NACT) and patients who achieved a pCR have a favorable prognosis (Liedtke C et al. J Clin Oncol 2008; Hahnen et al. JAMA Oncol 2017). However, women with residual TNBC following NACT have higher risk for recurrence than those with other subtypes of breast cancer (BC) (Cortazar P et al. Lancet 2014). Therefore, there is a compelling need to identify additional therapies to increase the percentage of patients with pCR and improve long term outcomes.

A relatively mature avenue of research has been the incorporation of additional agents such as carboplatin to standard anthracycline-based regimens in patients with stage II and III TNBC. In the neoadjuvant GeparSixto study, the pCR rate among patients with TNBC was increased from 36.9 % (95 % CI, 29.4-44.5) in patients not receiving carboplatin to 53.2 % (95 % CI 54.4-60.9) in patients receiving carboplatin (p=0.005) (von Minckwitz et al. Lancet Oncol 2014). In addition, the germline BRCA1/2 mutations and RAD mutations as well as family history of breast and/or ovarian cancer could not identify patients most likely to benefit from carboplatin (Hahnen et al. JAMA Oncol 2017). Long-term survival analysis of GeparSixto study showed that after a median follow-up of 47.3 months, TNBC patients treated with carboplatin had a significantly longer disease-free survival than those without (HR 0.56; 95 %CI [0.34-0.93]; p=0.024 (Untch et al. Ann Oncol 2017). In the BrighTNess study a significant improvement of pCR was demonstrated in patients treated with carboplatin, veliparib and paclitaxel compared to patients receiving paclitaxel alone (53 % vs 31 %, p < 0.001) but not to those receiving paclitaxel plus carboplatin (53 % vs 58 %, p=0.36) (Loibl S et al. Lancet Oncol 2018).

More recent approaches have been evaluating immune therapy with inhibitors of the programmed death-1 (PD-1)/programmed deathligand 1 (PD-L1) interaction in combination with chemotherapy. One of these PD-1/PD-L1 inhibitors is atezolizumab, a humanized immunoglobulin (Ig) G1 monoclonal antibody. It targets PD-L1 and inhibits the interaction between PD-L1 and its receptors, PD-1 and B7.1 (also known as CD80), both of which function as inhibitory receptors expressed on T-cells. Atezolizumab is being studied as a single agent as well as in combination with chemotherapy, targeted therapy, and cancer immunotherapy. Results of the I-SPY2 trial (Nanda et al. J Clin Oncol 2017) demonstrated that the PD-1/PD-L1 inhibitors co-administered with chemotherapy can increase pCR over chemotherapy alone. The phase 1b study of atezolizumab and nabpaclitaxel in patients with metastatic TNBC also reported a very high response rate (Adams S et al. J Clin Oncol 2016).

Given these results, the GeparDouze trial aims to explore the efficacy and safety of neoadjuvant and adjuvant administration of atezolizumab/ placebo in patients with high-risk TNBC. It is hypothesied that the cohort receiving atezolizumab will have a higher pCR rate, and this increased activity will result in improved event-free survival (EFS).

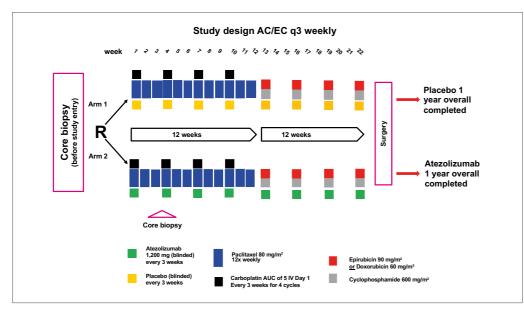
Study design and objectives:

GeparDouze aims to evaluate efficacy and safety of neoadjuvant/adjuvant administration of atezolizumab/placebo in TNBC patients with a sequential regimen of neoadjuvant atezolizumab/ placebo administered with weekly paclitaxel and with every-3-week carboplatin followed immediately by neoadjuvant administration of atezolizumab/placebo with epirubicin or doxorubicin/cyclophosphamide (EC/AC). Patients will then undergo surgery. Following surgery, determination of pCR status and recovery from surgery, patients who did not discontinue atezolizumab/placebo due to toxicity during neoadjuvant therapy will resume the original randomized investigational therapy assignment and continue the therapy as adjuvant treatment until 1 year after initial dose of atezolizumab/ placebo. Since activity of radiation therapy may also be augmented by inhibition of PD-1/PD-L1, radiation therapy, if indicated, should be co-administered with atezolizumab/placebo.

CONTACT:
Dr. Karin Hesse
Dr. Stephan Hofmann
Clinical Project Management

gepardouze@GBG.de

inal_GBG_ASR_2019.indd 54-55 03.02.20 15


This will allow for collection of safety data related to co-administration of atezolizumab with radiation therapy on a blinded, placebo-controlled trial. Adjuvant atezolizumab/placebo may be delayed until after completion of radiation therapy per investigator discretion.

radiation therapy per investigator discretion.

Patients are randomized in a 1:1 ratio to receive either neoadjuvant chemotherapy + atezolizumab 1200 mg or placebo IV every 3 weeks followed by surgery and continuation of atezolizumab 1200 mg or placebo IV as adjuvant therapy for 6 months. Stratification factors are group (NSABP Inc; GBG), tumor size (1.1-3.0 cm; >3.0 cm), EC/AC (q2w; q3w), nodal status (positive; negative) and PD-L1 status (positive; negative or indeterminate). Patients with

primary cT1c-cT3 TNBC and centrally assessed hormone receptor-status, HER2-status, Ki-67, and stromal tumor-infiltrating lymphocytes (sTILs) on core biopsy can be enrolled.

Co-primary objectives are 1) to determine whether the addition of atezolizumab to chemotherapy (weekly paclitaxel plus carboplatin followed by AC or EC) improves pCR in the breast and axilla (ypT0/Tis ypN0) and 2) to determine whether the addition of atezolizumab to chemotherapy followed by adjuvant atezolizumab improves EFS. Secondary objectives include assessment of other pCR definitions (ypT0/Tis and ypT0 ypN0); positive nodal status conversion rate; recurrence-free interval; overall survival; distant disease-free survival; brain

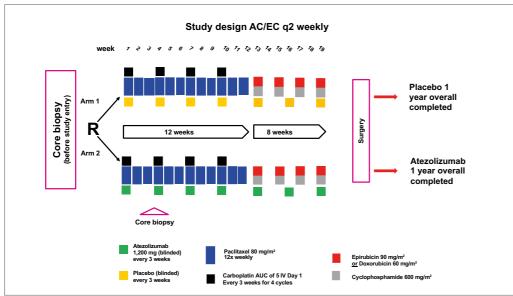


Figure 1: GeparDouze study design

metastases-free survival and safety. Tertiary objectives are assessment of pCR (ypT0/Tis ypN0) and EFS in patients with deleterious germline BRCA mutation status. Furthermore, the GeparDouze study will also address translational research questions such as to evaluate the expression of PD-L1 and percentage of TILs as predictors for pCR and EFS; to evaluate percentages of TILs in patients with residual BC at surgery as a predictor for EFS; to investigate potential new biomarkers of response and resistance using baseline and on-therapy specimens; to evaluate serial circulating tumor DNA (ctDNA) as a predictive biomarker for pCR and EFS as well as an early predictor of recurrence; to evaluate the microbiome of breast cancer patients and to explore potential new biomarkers, toxicity, immune markers, tumor antigens.

Study report:

GeparDouze recruitment started in December 2019. As of 31st December, there are 253 patients enrolled in the study. Follow-up of an additional 39 months after completion of accrual is planed to obtain 298 EFS events. The expected study duration is approximately 72 months [1-3].

Publications

- Loibl S, Jackisch C, Rastogi P et al. GeparDouze/ NSABP B-59: A randomized double-blind phase III clinical trial of neoadjuvant chemotherapy with atezolizumab or placebo in patients with triple negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo. Ann Oncol 2019; 30 (suppl_3): iii34-iii38; TIP-poster.
- 2. Geyer CE, Loibl S, Rastogi P et al. NSABP B-59/GBG 96-GeparDouze: A randomized double-blind phase III clinical trial of neo-adjuvant chemotherapy (NAC) with atezo-lizumab or placebo in patients (pts) with triple-negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo. J Clin Oncol 2019;37.15_suppl. TPS605.
- 3. Geyer CE Jr, Loibl S, Rastogi P et al. A randomized double-blind phase III clinical trial of neoadjuvant chemotherapy (NAC) with atezolizumab or placebo in patients (pts) with triple negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo: NSABP B-59/GBG 96-GeparDouze. SABCS 2019; OT2-04-08, TIP.

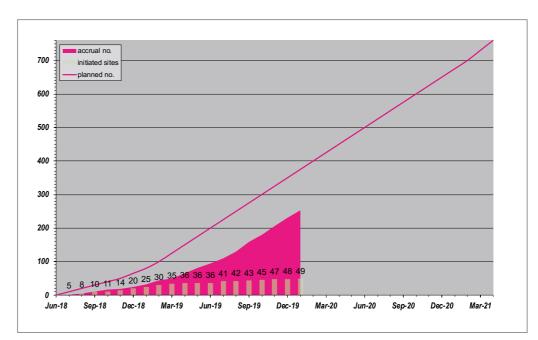


Figure 2: GeparDouze recruitment as of 31st December 2019

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the study by recruitment of the patients and by providing biomaterial in a timely manner.

COLLABORATING STUDY GROUPS:

SPONSOR:
NSABP Foundation Inc

STUDY CHAIR: Prof. Dr. Christian Jackisch Department of Obstetrics and Gynecology Sana Klinikum Offenbach

Final_GBG_ASR_2019.indd 56-57 03.02.20 15:35

CONTACT:
Konstantin Reißmüller
Clinical Project Management
amica@GBG.de

GBG 97: AMICA

Anti-hormonal maintenance treatment with or without the CDK4/6 inhibitor ribociclib after 1st line chemotherapy in hormone receptor positive / HER2-negative metastatic breast cancer: A phase II trial

NCT03555877

AMICA is a multicenter, prospective, randomized open-label, controlled phase II study that will recruit 150 patients from 20-30 sites in Germany.

Background

Dysregulation of the cell cycle is one of the hall-marks of cancer. The cyclin dependent kinases are a large family of serine / threonine kinases that have a crucial role in regulating cell cycle progression. For example, the cyclin dependent kinases 4 and 6 (CDK4/6) and their partner d-type cyclins control transition from G1 to S phase of the cell cycle by phosphorylating the retinoblastoma protein. Preclinical evidence demonstrated a synergistic inhibitory effect of CDK4/6 inhibitors and antiestrogens in hormone-receptor (HR) positive breast cancer (BC) cell lines. Ribociclib, a CDK4/6 inhibitor, is currently evaluated in various disease settings including phase III trials in metastatic breast cancer.

While guidelines recommend endocrine therapy as a 1st line treatment in patients with HR-positive/HER2-negative metastatic BC, about 30 % of patients will receive chemotherapy.

A meta-analysis of 11 randomized trials has shown that longer duration of therapy is associated with PFS and overall survival (OS)

(Gennari A. et al. J Clin Oncol. 2011). However, the duration of chemotherapy is frequently determined either by toxicities or by patients and physicians' preferences, resulting in treatment periods of less than 6 months. Moreover, although 1st line chemotherapy is effective in women with HR-positive/HER2negative BC, PFS is around 6-8 months and 2nd or 3rd line treatments are by far less effective. Therefore, well tolerated maintenance treatments with the potential to prolong PFS and even OS are urgently needed. The phase III MONALEESA-2 trial has reported a significant improvement in PFS in 1st line metastatic BC when the CDK4/6 inhibitor ribociclib was added to letrozole (25.3 vs. 16.0 months; hazard ratio=0.57) (Hortobagyi GN et al. N Engl J Med. 2016). Maintenance treatment with antihormonal drugs is an accepted treatment strategy in everyday clinical practice (Sutherland S et al. Eur J Cancer. 2016; Rossi S et al. Future Oncol. 2016) but prospective data are lacking. Therefore, the AMICA study evaluates the impact of the addition of a CDK4/6 inhibitor to an anti-hormonal maintenance treatment of physicians' choice.

Study design and objectives

After at least 4 cycles of chemotherapy of physician's choice, patients with at least stable disease will be randomized in a 2:1 ratio to receive endocrine maintenance therapy ± openlabel treatment with ribociclib therapy. Endocrine therapy, at the discretion of the investigator, could have already been started up to 4 weeks before randomization but not later

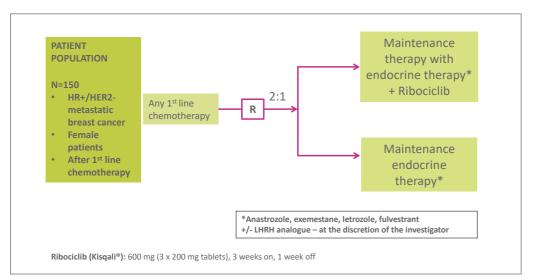


Figure 1: AMICA study design

than with first dose of ribociclib. Stratification factors for randomization will be: 1) previous endocrine treatment for metastatic disease (yes vs no); 2) involved sites (\leq 2 vs > 2); 3) best response under chemotherapy (response vs stable disease). In both study arms, treatment will be given until disease progression, unacceptable toxicity, or withdrawal of consent of the patient. AMICA primarily aims to evaluate the impact on PFS of an anti-hormonal maintenance therapy after 1st line chemotherapy at the discretion of the investigator (e.g. taxanes, capecitabine, vinorelbine, anthracycline) with or without the CDK4/6 inhibitor ribociclib. Secondary objectives are to evaluate the impact on OS and clinical benefit rate; to compare safety between the two arms; to compare treatment compliance between the two arms and to evaluate patient reported outcomes. Tertiary objectives are to evaluate biomarkers which might predict response to CDK inhibition and endocrine therapy using formalin-fix paraffin embedded (FFPE) metastatic tissue samples and blood (e.g. cyclines, RB expression, p27, p16 expression) as well as to assess the role of mutations, e.g. PIK3CA and ESR1 in circulating tumor DNA (ctDNA) [1].

An amendment of the study protocol (approved on 5th November, 2018) included the following changes: a) inclusion of patients who had previously received a CDK4/6 inhibitor; b) permission of using herbal medication

during study therapy; c) permission of surgery for primary tumor at the discretion of the investigator; d) exclusion of tamoxifen, one of the possible endocrine therapies, due to new data reported from the MONALEESA-7 trial [2].

Study report:

AMICA recruitment started in March 2018. As of 31st December 2019, there were 29 patients enrolled in the study. The expected study duration initially was 21 months, increased to 40 months via amendment 1 of the study protocol. Due to low recruitment another amendment to reduce the sample size to approximately 100 and to change the study design to one-arm study is in preparation.

Publications:

- Decker T, Barinoff, J, Furlanetto J et al. Antihormonal maintenance treatment with/ without the CDK4/6 inhibitor ribociclib after 1st line chemotherapy in HR+/HER2- metastatic breast cancer: a phase II trial (AMICA) GBG 97. 38. Jahrestagung Deutsche Gesellschaft für Senologie 2018; TIP-poster.
- Decker T, Denkert C, Lübbe K et al. Antihormonal maintenance treatment with or without the CDK4/6 inhibitor ribociclib after first line chemotherapy in hormone receptor positive/HER2 negative metastatic breast cancer: A phase II trial (AMICA) GBG 97. Ann Oncol 2018; 29 (suppl_8): 364TiP.

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the study by recruitment of the patients and by providing biomaterial in a timely manner.

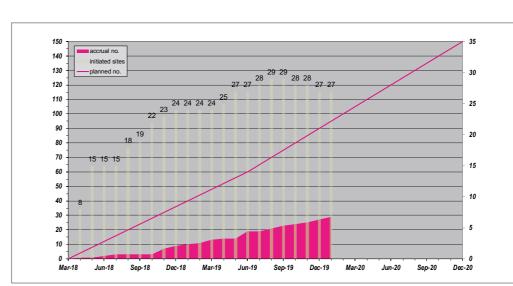


Figure 2: AMICA recruitment as of 31st December 2019

COLLABORATING STUDY GROUPS:

SPONSOR:

GBG Forschungs GmbH

COORDINATING
INVESTIGATOR
Prof. Dr. Thomas Decker
Gemeinschaftspraxis
Onkologie Ravensburg

Final_GBG_ASR_2019.indd 58-59 03.02.20 15:35

CONTACT: Konstantin Reißmüller Clinical Project Management padma@GBG.de

GBG 93: PADMA

A randomized, open-label, multicenter phase IV study evaluating palbociclib plus endocrine treatment versus a chemotherapy-based treatment strategy in patients with hormone receptor positive / HER2-negative metastatic breast cancer in a real world setting

NCT03355157

PADMA is an international, prospective, randomized, open-label, multicenter, controlled phase IV low intervention trial to test whether endocrine treatment with palbociclib is better than mono-chemotherapy +/- endocrine maintenance therapy as per treating physician's choice as first line therapy in advanced/metastatic breast cancer (MBC) that will be conducted in approximately 70 sites in Europe within approximately 36 months.

Background

Endocrine therapy is the recommended option for estrogen receptor (ER) positive / human epidermal growth factor receptor 2 (HER2) negative MBC as first-line therapy in the majority of patients except those with rapidly progressing, life-threatening disease, also known as visceral crisis (Cardoso F et al. Ann Oncol 2014; Gradishar et al. Natl Compr Canc Netw 2016; AGO guidelines 2016, www.ago-online.de). With the

novel CDK4/6 inhibitors in addition to either an aromatase inhibitor (AI) or fulvestrant the treatment landscape is changing rapidly. However, the data comparing endocrine therapy (ET) alone with chemotherapy (CT) are scarce and less convincing. Since palbociclib improves the efficacy of ET alone by about 50 %, the hypothesis is that palbociclib + ET is superior to monochemotherapy of physician's choice with or without ET maintenance therapy in time to treatment failure. However, due to rigid inclusion and exclusion criteria, limited number of treatment options, and strictly prescribed monitoring intervals the majority of clinical trials are done in an "artificial environment" and often do not mirror real world situation. Therefore, this trial is planned as low intervention real world trial to compare two treatment strategies that are commonly used options in real-world practice: a combination of palbociclib with ET versus a preplanned CT strategy with or without ET maintenance until treatment failure. In real world, the majority of patients with MBC receive CT to obtain a quick response, although it has not been proven that a quick response achievement will be translated into a patients benefit (e.g., longer TTF). Therefore, a pre-planned analysis will investigate the association between investigator- assessed response assessed 3 months after randomization and patient benefit (measured by TTF).

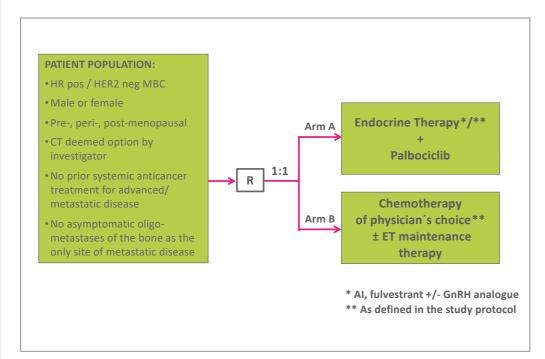


Figure 1: PADMA study design

The hypothesis of the study is that palbociclib + ET can show a significant improvement in time-to-treatment failure (TTF) over CT regimen (mono-chemotherapy with or without ET maintenance therapy). This will provide level 1 evidence from real world that palbociclib + ET is the first choice in MBC patients needing first-line therapy compared to CT with or without ET maintenance therapy. In addition, we assume that patient reported outcome (PRO) as measured by FACT-B, and a novel composite endpoint of well-being and healthcare utilization as measured by daily monitoring treatment impact (DMTI) will be improved with palbociclib + ET vs. CT regimen.

Study design and objectives:

Patients will be randomized in a 1:1 ratio to receive either ET with palbociclib or CT with or without endocrine maintenance therapy. Stratification factors for randomization will be: 1) hormone resistant (relapse on or within 12 months of end of adjuvant endocrine therapy) versus hormone sensitive (relapse beyond 12 months after end of endocrine therapy or denovo metastatic HR-positive / HER2-negative breast cancer); 2) symptomatic (as defined per investigator) vs. asymptomatic (as defined by investigator). In both study arms, treatment will be given until disease progression, unacceptable

toxicity, or withdrawal of consent of the patient or change of initial treatment plan (either approximately six chemotherapy cycles followed by maintenance endocrine therapy or chemotherapy until disease progression).

PADMA primarily aims to compare the time-totreatment failure (TTF) for patients randomized to receive pre-defined chemotherapy treatment strategy versus those randomized to receive palbociclib and endocrine therapy. The TTF is defined as time from randomization until discontinuation of treatment due to disease progression, treatment toxicity, patient's preference, or death. Secondary objectives are to compare progression free survival (PFS), time to first subsequent treatment (TFST), time to first subsequent chemotherapy (TFSCT) and time to second subsequent treatment regimen (TSST) between treatment arms; to compare the overall survival between treatment arms 36 months after the first patient was randomized; to compare patient well-being and health care utilization (number and duration of phone calls, and patient visits to investigator sites), content with Quality of Life (QoL) and degree of bother by side-effects; to assess PRO measured by FACT-B; to compare time-to-deterioration in Trial Outcome Index-Physical/Functional/Breast (TOI-PFB derived from FACT-B); to compare safety, tolerability and treatment compliance

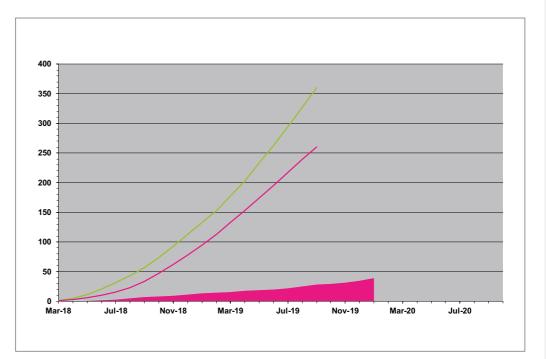


Figure 2: PADMA recruitment as of 31st December 2019

Final_GBG_ASR_2019.indd 60-61 03.02.20 15:3

COLLABORATING STUDY GROUPS:

SPONSOR: GBG Forschungs GmbH

INTERNATIONAL
STUDY CHAIR:
Prof. Dr. Sibylle Loibl
German Breast Group,
Neu-Isenburg

COORDINATING
INVESTIGATOR:
PD Dr. Marc Thill
Klinik für Gynäkologie und
Geburtshilfe, Agaplesion
Markus Krankenhaus,
Frankfurt am Main

between the two arms. Exploratory objectives include comparison of time to response as assessed by the investigator; comparison of duration of first subsequent treatment (DFST); investigation of association between investigator- assessed response measured 3 months after randomization and patient benefit (measured by TTF) [1].

Furthermore, the PADMA study will also address translational research questions such as an investigation of biomarkers (e.g., cyclines, RB expression, p27, p16 expression) which might predict the response to CDK inhibition in MBC as well as evaluation of circulating tumor DNA (ctDNA) at various time points (at start of therapy, throughout treatment and at end of treatment) to monitor tumor progression. The protocol has been amended in July 2018. The main changes of this protocol amendment 1 were a reduction of the number of planned patients, and the removal of the initially planned interim analysis and of an activity tracker monitoring sleep and activity levels, respectively.

Study report:

The PADMA recruitment started in March 2018 in Germany. As of 31st December 2019, there are 39 patients enrolled in the study. The study will also be opened for sites in Spain. The end of the study (i.e. last visit of the last patient randomized) is estimated for 2021 [1-3].

Publications:

- Loibl S, Barinoff J, Decker T, et al. A randomized, open-label, multicentre, phase IV study evaluating palbociclib plus endocrine treatment versus a chemotherapy based treatment strategy in patients with hormone receptor positive/HER2-negative metastatic breast cancer in a real world setting. J Clin Oncol 2017;35 15_suppl. TPS1115).
- 2. Loibl S, Barinoff J, Seiler S, et al. A randomized, open-label, multi-center phase IV study evaluating Palbociclib plus endocrine treatment versus a chemotherapy-based treatment strategy in patients with hormone receptorpositive, HER2-negative metastatic breast cancer in a real world setting (PADMA). Cancer Res 2018;78(4 Suppl):OT3-05-04.
- Thill M, Seiler S, Decker T et al. A randomized, open-label, phase IV study evaluating palbociclib plus endocrine treatment versus a chemotherapy-based treatment in patients with hormone receptor-positive, HER2negative metastatic breast cancer (PADMA).
 Jahrestagung Deutsche Gesellschaft für Senologie 2018; TIP-poster.

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the study by recruitment of the patients and by providing biomaterial in a timely manner.

GBG 94: PATINA

A randomized, open-label, phase III trial to evaluate the efficacy and safety of palbociclib + Anti-HER2 therapy + endocrine therapy vs. Anti-HER2 therapy + endocrine therapy after induction treatment for hormone receptor positive (HR+)/HER2-positive metastatic breast cancer

NCT02947685

PATINA (AFT-38) is an international, multicenter, randomized, open-label, phase III trial testing the efficacy and safety of palbociclib + anti-HER2 therapy + endocrine therapy vs. anti-HER2 therapy + endocrine therapy after induction treatment for hormone receptor positive (HR+)/HER2-positive metastatic breast cancer that will recruit 496 patients worldwide (120 patients from approximately 30 sites in Germany) within 36 months.

PATINA is a collaborative study conducted by Alliance Foundation Trials (AFT), LLC in partnership with the German Breast Group (GBG) and supported by AFT, LLC.

Background

In light of the evolving breast cancer (BC) classification, HER2-positive BC has emerged as a separate disease entity and the development of therapies targeting the HER2 receptor has dramatically improved patient outcomes. During the first decade of trastuzumab use for advanced HER2-positive BC, a significant improvement in the understanding of the biology of HER2-positive disease led to the development and approval of novel anti-HER2 agents. In order to improve beyond the current standards, it is important to highlight the major limitations of available therapies: 1) patients with advanced disease inevitably develop resistance to anti-HER2 therapies; 2) tumor heterogeneity within HER2-positive BC is now evident and can be divided into two major subtypes according to the expression of hormone receptor (HR) status; 3) specific subsets of HER2-positive disease (e.g. somatic PIK3CA mutation) have a particularly unfavorable outcome when treated with conventional chemotherapy. Taken together these factors point to the need for clinical studies dedicated to specific subsets of HER2positive BC.

The PATINA study is built on strong preclinical and clinical rationale demonstrating the benefits of palbociclib, a selective CDK4/6 inhibitor,

when given in combination with endocrine therapies (ET) and anti-HER2 therapies. The expectation is that the addition of palbociclib to the first-line treatment of HER2-positive/HR-positive disease will delay the onset of therapeutic resistance and ultimately prolong patient survival.

Study design and objectives:

PATINA primarily aims to demonstrate that the combination of palbociclib with anti-HER2 therapy plus endocrine therapy is superior to anti-HER2-based therapy plus endocrine therapy in prolonging progression-free survival (PFS) in participants with HR+/HER2-positive metastatic BC who have not received any prior treatment beyond induction treatment in this setting. Secondary objectives are to compare measures of tumor control (including PFS, overall response, clinical benefit rate, duration of response) between the treatment arms; to compare median overall survival (OS) at 3-years and 5-years between the treatment groups; to compare safety and tolerability between the treatment arms; to compare the incidence of central nervous system metastasis between the treatment arms; to compare patient reported time to symptom progression as assessed by the FACT-B TOI-PFB; to compare patient reported BC specific health related quality of life (HRQoL) and general health status. In addition, PATINA includes translational research objectives which will investigate the benefits of palbociclib in subsets of HER2-positive disease (e.g. PIK3CA mutant) [1].

The protocol has been amended in February 2018. Essential points of this amendment were (1) to clearly delineate between preliminary screening vs. randomization process, (2) a more detailed description of the specimen collection and storage for the Mastering Breast Cancer (MBC) Initiative, and (3) updates of the in- and exclusion criteria, respectively.

The next protocol amendment (anticipated for December 2019) includes the following essential points: (1) updates of the in- and exclusion criteria; (2) IMP will change from capsules to tablets; (3) modification of drug handling (including drug dispensation and accountability, drug administration and dose modification); (4) administrative changes.

Translational research

Translational research will be performed to compare progression-free survival based upon

CONTACT: Christoph Schwarzkopf Clinical Project Management patina@GBG.de

Final_GBG_ASR_2019.indd 62-63 03.02.20 15:35

> investigator assessment of progression between patients in the two treatment arms in the subset of patients with tumors bearing a PIK3CA mutation. PIK3CA genotype will be assessed in circulating cell-free DNA (cfDNA). The exploratory objectives are to evaluate PFS and OS in genomically-defined BC subgroups based on pre-specified genomic assays; to evaluate baseline tumor- and blood-based markers as predictors of benefit from the addition of palbociclib to anti-HER2 therapy plus ET; to evaluate tumor- and blood-based markers at the time of disease recurrence for mechanisms of resistance to therapy; to compare serial levels of cfDNA in patients receiving anti-HER2 therapy plus ET versus anti-HER2 therapy plus ET plus palbociclib; to compare mutational profile/copy number variants obtained from tumor tissue to those measured in cfDNA; to determine the trough concentrations of palbociclib when given in combination with trastuzumab plus ET or trastuzumab plus pertuzumab plus ET; to determine trastuzumab and pertuzumab trough concentrations when given in combination with palbociclib plus ET; to explore correlations between palbociclib exposure and efficacy/ safety findings in this patient population.

Study report:

The PATINA worldwide recruitment started in July 2017 and in Germany in July 2018, respectively. As of 31st December 2019, there are 12 patients enrolled in the study at the German sites. Enrollment is targeted to be completed by December 2020 and the last patient last visit is expected for December 2025 [1-4].

Publications

- 1. Metzger O, Mandrekar S, Ciruelos E, et al. PATINA: A randomized open label phase III trial to evaluate the efficacy and safety of palbociclib 1 anti HER2 therapy 1 endocrine therapy vs anti HER2 therapy 1 endocrine therapy after induction treatment for hormone receptor positive, HER2-positive metastatic breast cancer. Ann Oncol 2017; 28 (suppl.5): 324 TiP.
- 2. Metzger O, Mandrekar S, Loibl S, Ciruelos E, Gianni L, et al. PATINA: A randomized open label phase III trial to evaluate the efficacy and safety of palbociclib + anti HER2 therapy + endocrine therapy vs anti HER2 therapy + endocrine therapy after induction treatment for hormone receptor positive, HER2 positive

- metastatic breast cancer. Cancer Research 2018; 78(4 Supplement):OT3-05-07.
- 3. Loibl S, Metzger O, Mandrekar SJ et al. PATINA: A randomized, open label, phase III trial to evaluate the efficacy and safety of palbociclib + Anti-HER2 therapy + endocrine therapy (ET) vs. anti-HER2 therapy + ET after induction treatment for hormone receptor positive (HR+)/HER2-positive metastatic breast cancer (MBC). Ann Oncol 2018; 29 (suppl_8):369 TiP.
- 4. Metzger O, Mandrekar S, Ciruelos E PATINA:
 A randomized, open label, phase III trial to
 evaluate the efficacy and safety of palbociclib
 + anti-HER2 therapy + endocrine therapy (ET)
 vs. anti-HER2 therapy + ET after induction
 treatment for hormone receptor positive
 (HR+)/HER2-positive metastatic breast
 cancer (MBC). Cancer Res 2019;79(4 Suppl):
 Abstract nr OT3-02-07.

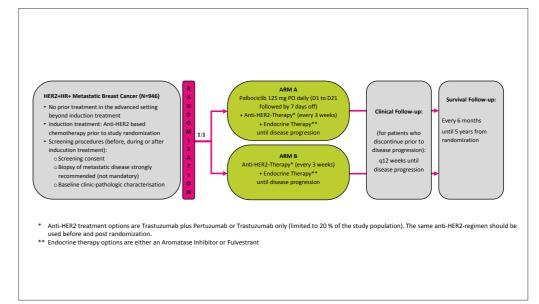


Figure 1: PATINA study design

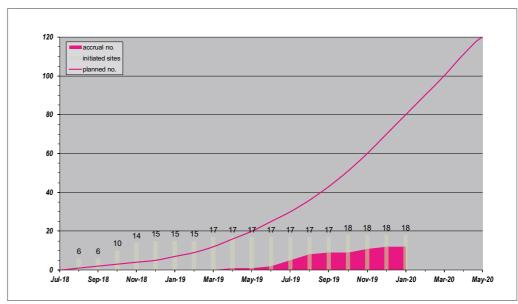


Figure 2: PATINA recruitment as of 31st December 2019

COLLABORATING STUDY GROUPS:

SPONSOR:

Alliance Foundation Trials

INTERNATIONAL
STUDY CHAIR:
Otto Metzger MD
Alliance Foundation Trials

COORDINATING INVESTIGATOR GERMANY: Prof. Christoph Mundhenke Klinikum Bayreuth, Klinik für Gynäkologie und Geburtshilfe, Bayreuth

Final_GBG_ASR_2019.indd 64-65 03.02.20 15:35

CONTACT:

Dr. Ioannis Gkantiragas Clinical Project Management bcp@GBG.de

GBG 29: Breast Cancer in Pregnancy (BCP)

Prospective and retrospective registry study of the German Breast Group (GBG) for diagnosis and treatment of breast cancer in pregnancy compared to young non-pregnant women

NCT00196833

BCP (BIG 03-02) is a long time retrospective/ prospective multicenter, international registry that will recruit pregnant breast cancer patients and non-pregnant young women.

Background

Breast cancer in pregnancy is regarded as a rare coincidence. However, about 7 % of the women diagnosed with breast cancer are younger than 40 years with a small increase in the incidence in the last years (Eisemann et al. Geburtsh Frauenheilk 2013; De Santis et al. CA Cancer J Clin 2011). The median age of first pregnancy in Germany is 30 years (according to the federal statistical office). Since the incidence of breast cancer under the age of 40 is rising and women tend to delay pregnancy into later reproductive years the coincidence of pregnancy and breast cancer is increasing. Little is known about the incidence of breast cancer in pregnancy in Germany and Western Europe.

Therefore, in 2003 the German Breast Group launched a registry which was extended throughout Europe and worldwide (Breast International Group), to systematically investigate breast cancer during pregnancy and to increase the evidence for treatment options.

With an amendment of the original study protocol, it is now possible to also include a non-pregnant control cohort of women diagnosed with breast cancer at or below the age of 40 years. Those can be matched to the pregnant breast cancer patients as controls treated in everyday clinical practice.

All patients with histologically confirmed breast cancer who are pregnant, as well as patients of 40 years or younger with histologically confirmed breast cancer who are not pregnant and have given informed consent for data collection and biomaterial collection can be entered into the registry. Retrospective participants can be entered without an informed consent as long as the data are captured anonymously.

Study objectives

The BCP study primarily aims to assess the fetal outcome 4 weeks after delivery. Secondary endpoints will include maternal outcome of pregnancy, tumor stage at presentation and

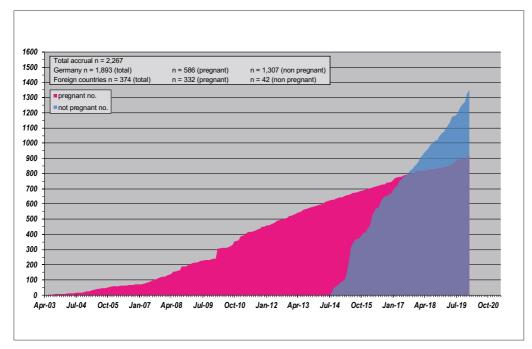


Figure 1: BCP recruitment as of $31^{\rm st}$ December 2019

biological characteristics, breast cancer therapy, type of surgery, mode of delivery (vaginal vs. caesarean), outcome of the new-born 5 years after diagnosis, and outcome of breast cancer 5 years after diagnosis.

In addition, the registry allows investigation of translational research questions, using tumor specimen as well as placenta tissue from patients with breast cancer during pregnancy.

Study report

As of 31st December 2019, a total of 2,267 patients have been registered, 1,893 in Germany (586 pregnant and 1,307 non pregnant women).

A first analysis of registry data looking at fetal health for up to 4 weeks after delivery included 447 patients and showed that although infants exposed to chemotherapy in utero had a lower birth weight and reported more complications compared to their unexposed counterparts, these differences were not clinically significant. Since none of the infants was exposed to chemotherapy in the first trimester, the differences were most likely related to premature delivery. This led to the conclusion that preterm birth was strongly associated with adverse events and a full-term delivery seems to be of paramount importance. Moreover, a delay of cancer treatment did not significantly affect disease-free survival for mothers with early breast cancer [1].

In a combined analysis of our data with data form the Cancer in Pregnancy registry, Leuven, Belgium, we were able to demonstrate that overall survival was similar for patients diagnosed with breast cancer during pregnancy compared with non-pregnant patients. This information is important for counseling patients and supports the option to start treatment with continuation of pregnancy [2].

We were also able to demonstrate that neoadjuvant chemotherapy for patients with breast cancer during pregnancy results in the same pCR rate if given during pregnancy or after delivery and as in non-pregnant controls. Disease free and overall survival was not different between the three cohorts [3].

The general recommendation derived from the registry data so far is that patients with breast cancer during pregnancy can and should be treated as closely as possible according to patients diagnosed outside pregnancy. Up-todate guidelines on breast cancer during preg-

nancy, which also incorporated outcomes from the BCP registry, have been published in 2015 [4]. Little is known about the impact of pregnancy on breast cancer biology at the genomic level. It is believed that breast cancer during pregnancy is biologically not different from breast cancer diagnosed outside pregnancy [5]. Current translational research project aims to compare the mutational pattern as well as the gene expression profile between pregnant and non-pregnant patients with breast cancer. In our preliminary results we showed that overall the mutational landscape does not seem to be different between pregnant patients enrolled in BCP study and no-pregnant controls obtained from The Cancer Genome Atlas (TCGA) database [6,7]. Further analyses using other datasets are currently conducted.

Data from the BCP registry including oncological management, toxicity and survival of young non-pregnant patients with breast cancer diagnosed at the age of 40 years or younger has been analyzed. From February 2014 until June 2018, 969 non-pregnant patients ≤ 40 years have been registered. The median age at diagnosis was 35 years (range 19-40). Overall, 90.1 % of patients had a stage T1-2 at diagnosis and 67.1 % of patients had negative lymph nodes; 86.7 % of tumors were invasive ductal carcinomas and 4.1 % lobular carcinomas. Grade (G) 3 was reported in 55.5 %; 26.6 % of tumors were luminal A-like (ER- and/or PgR-positive, HER2- negative, G1-2), 40.0 % luminal B-like (ER- and/or PgR-positive, HER2-negative, G3 or ER- and/or PgR-positive, HER2-positive, any G), 7.7 % HER2 positive non-luminal-like, and 25.7 % triple negative breast cancers. 3.8 % of young nonpregnant patients had metastatic disease at primary diagnosis [8].

Recently, a histologic and epigenetic analysis of placenta tissue from breast cancer patients (N=66) and non-cancer participants (N=20) enrolled in the BCP registry demonstrated morphologic abnormalities and a decreased proliferation index without increase of apoptotic cells in placenta from breast cancer patients as compared with placenta from normal pregnancies. Altered expression of efflux pumps or drug-metabolizing enzymes might be a reason for good fetal tolerability of chemotherapy during pregnancy as methylation patterns were changed in P-gP and CYP-3A4 genes [9].

Final_GBG_ASR_2019.indd 66-67 03.02.20 15:

COLLABORATING STUDY GROUPS:

SPONSOR:

The project was initially supported by the BANSS-Foundation and German Cancer Consortium (DKTK)

STUDY CHAIR:

Prof. Dr. Sibylle Loibl German Breast Group, Neu-Isenburg

Publications

- Loibl S, Han SN, von Minckwitz G, et al. Treatment of breast cancer during pregnancy: an observational study. Lancet Oncol 2012; 13(9):887-96.
- Amant F, von Minckwitz G, Han SN, et al. Prognosis of women with primary breast cancer diagnosed during pregnancy: results from an international collaborative study. J Clin Oncol 2013; 31(20):2532-9.
- 3. Loibl S, Han S, Mayer K, et al. Neoadjuvant chemotherapy for patients with breast cancer during pregnancy (BCP). J Clin Oncol 2014; 32:5s (suppl; abstr 1071).
- 4. Loibl S, Schmidt A, Gentilini O, et al. Breast Cancer Diagnosed During Pregnancy: Adapting Recent Advances in Breast Cancer Care for Pregnant Patients. JAMA Oncol 2015; 1(8):1145-53.
- 5. Loibl S, Han SN, Amant F. Being Pregnant and Diagnosed with Breast Cancer. Breast Care (Basel). 2012; 7(3):204-209.

- Loibl S, Pfarr N, Weber K, et al. Comparison of the mutational landscape of breast cancer during pregnancy and non-pregnant controls. Ann Oncol 2017; 28(suppl_1):Abstract nr 10P.
- Loibl S, Pfarr N, Weber K, et al. Comparison of the mutational landscape of breast cancer during pregnancy and non-pregnant controls. Cancer Res 2017;77(4 Suppl):Abstract nr P2-03-09.
- Seiler S, Schmatloch S, Reinisch M et al. Cancer Management and Outcome of very young non-pregnant patients with breast cancer diagnosed at 40 years or younger – GBG 29. Cancer Res 2019;79(4 Suppl): Abstract nr P1-17-07.
- Froehlich K, Plösch T, Seither F et al. Histological and epigenetic analyses of placenta tissue from breast cancer patients and healthy participants. SABCS 2019; Abstract nr P4-21-06.

Thanks to all participating sites and practices that have entered their patients into the registry and have contributed to this important research so far. We would kindly like to remind all study centers to provide biomaterial which is urgently needed to answer translational research questions. More information and CRF forms are available on the GBG website: http://www.germanbreastgroup.de/de/studien/bcp.php

GBG 79: Brain Metastases in Breast Cancer (BMBC)

BMBC (Brain Metastases in Breast Cancer) is a long-time retrospective and prospective multicenter registry designed to collect tumor characteristics of the primary and metastatic tumor as well as treatment data from patients diagnosed with brain metastases of breast cancer treated in German hospitals.

Background

Brain metastases of breast cancer reduce quality of life and prognosis in breast cancer patients. Their incidence has increased during the last years (Frisk et al. Br J Cancer 2012). 10-40 % of patients with metastatic breast cancer will develop brain metastases during the course of disease depending on the biological subtype of the primary tumor. The prognosis for patients with brain metastases is generally poor. Good performance status and a limited number of brain metastases are factors that can prolong survival (Ogawa et al. J Neurooncol 2008). Therapeutic approaches in treating metastases of the central nervous system include surgery, radiotherapy, and systemic chemotherapy and the combination of these options.

Due to the analysis of small and heterogeneous patient cohorts, risk factors for the development of brain metastases and the impact of early detection of brain metastases have been analyzed insufficiently. Improvement of treatment strategies are required as the number of brain metastases will increase over the next years due to the better control of visceral disease. A multidisciplinary approach with rapid integration of new treatment strategies is required for the treatment of patients developing brain metastases, aiming to prolong survival, preserve neurologic function and improve quality of life. The BMBC registry was initiated to include patients with brain metastases and a history of breast cancer that were diagnosed for brain metastases since the year 2000. Registration of patient data is allowed prospectively after obtaining an informed consent. Retrospective participants can be entered without an informed consent if the patient is not able to sign the informed consent and as long as the data are anonymously captured.

The registry study is performed in collaboration with Prof. Dr. Volkmar Müller, Priv. Doz. Dr. Isabell Witzel, and Dr. Elena Laakmann from the Universitätsklinikum Hamburg-Eppendorf.

Study objectives

The BMBC registry aims to collect data to deter-

mine the incidence of brain metastases, the number and size of brain metastases, location, histopathological characteristics of the primary tumor and brain metastases, sensitivity of diagnostic tools (cranial computed tomography (CT) and magnetic resonance imaging (MRI)), performance status, prognosis, quality of life, and the influence of treatment strategies on prognosis and neurological function. In addition, the registry allows investigation of translational research questions, using tumor specimen of the primary and metastatic tumor.

Planned analyses include treatment patterns in Germany, patient outcome, as well as validation of prognostic scoring systems in a multicenter setting and in the context of new targeted therapies. Planned translational research projects include the impact of glycosylation, resistance mechanisms against HER2-targeted therapies, the role of the blood brain barrier, evaluation of markers of radioresistance and specific genomic alterations associated with brain tropism of breast cancer cells.

Study report

The study was opened for documentation in April 2014 with more than 50 participating centers. As of 31st of December 2019, 2,864 patients have been registered and 404 tissue samples have been received. Registration of patients is ongoing. First analysis of treatment patterns and clinical outcome in 1,105 breast cancer patients with brain metastases (BM) from the BMBC registry has confirmed our previous findings [1,2] and has shown that HER2-positive patients had the longest median survival with 12.1 months (95 % CI, 10.2–13.7) compared to 5.5 months (95 % CI, 4.1-7.1) for luminal primary tumors and 4.1 months (95 % CI, 3.1-4.8) for triple-negative patients (p < 0.001) [3]. Median overall survival (OS) of patients with BM diagnosed between 2000 and 2006 was 7.2 months (95 %CI, 5.3-9.6) compared to 6.7 months (95 % CI, 5.5-8.1) of patients diagnosed between 2007 and 2012 (p=0.848). However, we could not observe improvement of survival over the study period and the time intervals in any tumor subtype. Hence, larger patient cohorts are needed to detect the survival difference.

A subproject has retrospectively analyzed clinical data, CT and MRI scans obtained from 300 breast cancer patients with BM in 4 centers participating in the BMBC registry in Germany [4]. Patients with hormone receptor (HR)-positive or HER2-positive status had a significantly lower number

BMBC

CONTACT:
Udo Pfeil
Clinical Project Management
brainmet@GBG.de

Final_GBG_ASR_2019.indd 68-69 03.02.20 15:35

of BM at diagnosis. HER2-positive patients treated with trastuzumab before the diagnosis of BM demonstrated a lower incidence of intracranial metastases. Patients with HER2-positive breast cancer had a higher number of cerebellar metastases compared to HER2-negative patients, whereas patients with triple-negative breast cancer developed more often leptomeningeal disease. These findings suggest a different tumor cell homing to different brain regions depending on molecular subtype and treatment.

An update of the first clinical data of patients participating in the BMBC registry has recently been published [5]. A total of 1,712 breast cancer patients who developed BMs between January 2000 and December 2016 at 80 institutions in Germany were retrospectively analyzed. Median age at diagnosis of BMs was 56 years (22-90 years). About 47.8 % (n=732) of patients had HER2-positive, 21.4 % (n=328) had triplenegative and 30.8 % (n=471) had HR-positive, HER2-negative (luminal-like) primary tumors. The proportion of patients with HER2-positive BMs decreased when the years 2000-2009 are compared with 2010-2015 (51 % vs 44 %), whereas the percentage of patients with luminallike tumors increased (28 % vs 34 %), (p=0.033). Patients with BMs in the posterior fossa were more often HER2-positive (53.8 %) compared to those with triple-negative (20.7 %) or luminallike primary breast cancer (25.5 %), (p<0.0001). Median overall survival (OS) after development of BMs for the entire cohort was 7.4 months (95 % CI 6.7-8.0 months). One-year survival rate was 37.7 % (95 % CI, 35.2-40.1). Patients with HER2-positive tumors had the longest median OS of 11.6 months (95 % CI, 10.0-13.4) compared with 5.9 months (95 % CI, 5.0-7.2) for patients with luminal-like and 4.6 months (95 %CI 3.9-5.4) for patients with triple-negative tumors. Patients with HER2-positive tumors who received anti-HER2 treatment had longer median OS than those without (17.1 vs 7.2 months, p<0.0001). Thus, the analysis of this large cohort of breast cancer patients with BMs demonstrated that the subtype of the primary tumor can influence the location of BMs and has a high impact on prognosis. In addition, a validation of the prognostic value of the disease-specific breast-graded prognostic assessment (breast-GPA) score in breast cancer patients with BM from the BMBC registry has been presented at the SABCS 2018. The breast-GPA score included age, Karnofsky performance score and tumor subtype of breast cancer patients (Sperduto et al. Int J Radiation Oncology Biol

Phys 2012). The breast-GPA score has been further demonstrated to better identify patients with a bad prognosis (Laakmann E, et al. J Cancer Res Clin Oncol 2016) as compared with other prognostic indices which were developed to stratify patients with BM in groups according to their outcome. Therefore, this analysis aimed to validate the breast-GPA in breast cancer patients with BMs from the BMBC registry. A total of 613 patients were categorized into 4 groups according to the breast-GPA scores: 0-1: 11.9 % (n=73), 1.5-2: 22.3 % (n=137), 2.5-3: 47.8 % (n=293), and 3.5-4: 18 % (n=110). Median overall survival (OS) within the breast-GPA subgroups varied between 2.4 (95 %Cl 2.0-3.4); 4.8 (95 %Cl 3.6-6.9); 9.2 (95 %CI 7.2-11.3) and 12.3 (95 %CI 8.9-18.0) months, respectively and was significantly shorter compared to the OS published by Sperduto et al. [6].

Publications

- Witzel I, Laackman E, Fehm T, et al. Brain Metastases in Breast Cancer Network Germany (BMBC, GBG 79): Multicentric, retroand prospective collection of patient data and biomaterial from breast cancer patients with brain metastases. Cancer Res 2015; 75 (9 Suppl): Abstract OT2-5-01.
- Witzel I, Loibl S, Laakmann E, et al. Brain Metastases in Breast Cancer Network Germany (BMBC, GBG 79): First analysis of 1004 patients from the multicenter registry. Cancer Res 2016;76(4 Suppl): Abstract nr P6-17-08.
- Mueller V, Loibl S, Laakmann E et al. Doris Augustin, Brain Metastases in Breast Cancer Network Germany (BMBC, GBG 79): Treatment patterns and clinical outcome of more than 1000 patients with brain metastases from breast cancer. J Clin Oncol 34, 2016 (suppl; Abstract 2070).
- Laakmann E, Witzel I, Scriba V et al. Radiological Patterns of Brain Metastases in Breast Cancer Patients: A Subproject of the German Brain Metastases in Breast Cancer (BMBC) Registry. Int J Mol Sci. 2016 23;17(10).
- Witzel I, Laakmann E, Weide R, et al. Treatment and outcomes of patients in the Brain Metastases in Breast Cancer Network Registry. Eur J Cancer. 2018; 102:1-9.
- Witzel I, Riecke K, Laakmann E et al. Validation of different prognostic scores in breast cancer patients with brain metastases of the BMBC registry (GBG-79). Cancer Res 2019; 79(4 Suppl):Abstract nr P4-08-26.

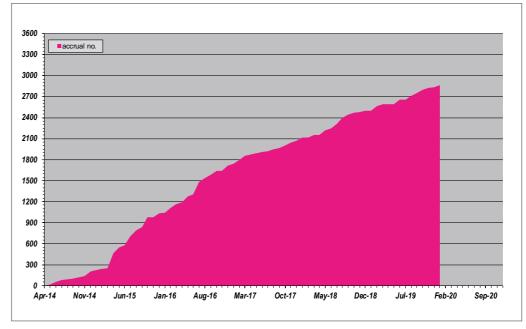


Figure 1: BMBC recruitment as of 31st December 2019

We encourage all study centers and practices to enter eligible patients into the registry.

We thank all participating sites that have entered their patients into the registry and have contributed to this important research so far.

We would like to kindly remind all sites to provide biomaterial which is urgently needed to answer translational research questions.

COLLABORATING STUDY GROUPS:

SPONSOR: GBG Forschungs GmbH

STUDY CHAIRS:
PD Dr. Isabell Witzel
and
Prof. Dr. Volkmar Müller
Universitätsklinikum
Hamburg-Eppendorf,
Klinik und Poliklinik für
Gynäkologie

Final_GBG_ASR_2019.indd 70-71 03.02.20 15:35

72 Annual Scientific Report 2019 Recruiting Studies ______

CONTACT:
Dr. Ioannis Gkantiragas
Clinical Project Management
desiree@gbg.de

GBG 86: DESIREE

A multicenter, randomized, double-blind, phase II study to evaluate the tolerability of an induction dose escalation of everolimus in patients with metastatic breast cancer

NCT02387099

DESIREE is a multicenter, double-blind, randomized phase II trial that will recruit 156 patients from 60 sites in Germany within approximately 24 months.

Background

The BOLERO-2 study demonstrated an enormous benefit for patients who received everolimus in addition to exemestane and who progressed during/after a non steroidal aromatase inhibitor (NSAI) (Baselga N Engl J Med 2012), which led to approval of everolimus in this indication. However, experience from routine use has shown a high rate of intolerability of this innovative treatment approach especially during the first 12 weeks of treatment. Most common side effect is mucositis/stomatitis which is considered the leading cause for treatment discontinuation not related to tumor progression. This outside clinical trial experience is contrary to findings from BOLERO-2, where the number of patients still taking full-dose (10 mg) of everolimus at 4, 8, and 12 weeks is 77.8 %, 75.6 %, and 75.6%, respectively. These findings are in concordance with non-interventional studies.

In the non-responder part (setting III) of the neoadjuvant GeparQuinto study, everolimus was given as salvage treatment in combination with paclitaxel for patients without response to 4 cycles epirubicin/cyclophosphamide +/- bevacizumab. A dose-escalation schema was successfully used to improve tolerability of everolimus together with the cytotoxic agents (von Minckwitz Ann Oncol 2014).

The palliative DESIREE study compares the cumulative rate of mucositis/stomatitis grade 2-4 (WHO's oral toxicity scale (OTS) at 12 weeks after start of treatment using a conventional and a dose-escalating schema of everolimus in combination with exemestane in patients with metastatic breast cancer and progression or relapse after non-steroidal aromatase-inhibitor treatment.

Study design and objectives

DESIREE primarily aims to assess the cumulative rate of mucositis/stomatitis grade 2-4 (OTS) at 12 weeks after start of treatment using a conventional and a dose-escalating schema of everolimus in combination with exemestane. Secondary objectives are: the cumulative rate of mucositis/stomatitis grade 2-4 (OTS), cumulative rate of mucositis/stomatitis grade 1 and any grade (OTS) at 12 and 24 weeks after start of treatment, rate of patients on 10 mg daily at 12 weeks and 24 weeks, clinical benefit rate at 24, safety with regard to other organ signs and symptoms, time to grade ≥ 2 mucositis/stomatitis, cumulative dose at 4 weeks, relative dose intensity for everolimus and quality of life using the FACT-B questionnaire and the QSDQ. Potential biomarkers predicting safety and compliance will be determined after completion of study treatment.

Study report

DESIREE started recruitment in June 2015. As of 31st December 2019, a total of 142 patients have been included. The end of the study (i.e. last visit of the last patient randomized) was initially estimated for October 2017, but due to the very slow accrual it was recently extended to QIV/2020.

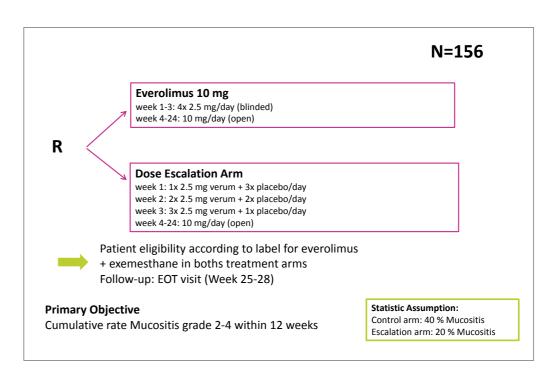


Figure 1: DESIREE study design

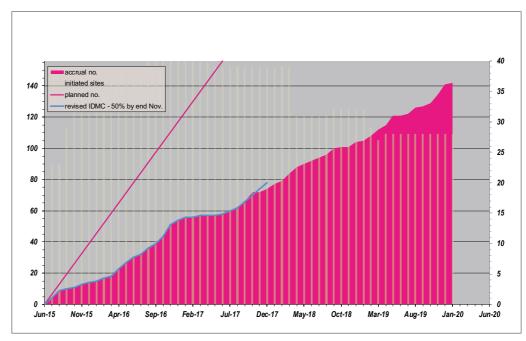


Figure 2: DESIREE recruitment as of 31st December 2019

We are thanking all participating centers for their commitment and efforts so far. We would like to encourage all sites to continue to support the DESIREE study by recruitment of patients and provision of biomaterial in a timely manner.

COLLABORATING STUDY GROUPS:

GBG

GERMAN
BREAST
GROUP

SPONSOR: GBG Forschungs GmbH

STUDY CHAIR: Prof. Dr. Sibylle Loibl German Breast Group, Neu-Isenburg

Final_GBG_ASR_2019.indd 72-73 03.02.20 15:35

74 Annual Scientific Report 2019 Recruiting Studies

CONTACT: Christoph Schwarzkopf Clinical Project Management aurora@GBG.de

GBG 85: AURORA

Aiming to Understand the Molecular Aberrations in Metastatic Breast Cancer

NCT02102165

AURORA is an exploratory, multinational, collaborative molecular screening program aiming to recruit and collect biomaterial from 1,000 metastatic breast cancer patients from 69 sites (7 in Germany) within approximately 4 years.

Background

The current era of molecular oncology offers the technology to characterize, at the base pair level, the complete molecular landscape of cancer. This heralds great promise with regards to understanding driving genetic aberrations, elucidating tumor genetic heterogeneity, discovering new therapeutic targets, and ultimately improving outcomes for cancer patients. For breast cancer in particular, recent studies using massively parallel sequencing have uncovered a large number of candidate "driver" mutations that occur at a low frequency. In some cases, these driver mutations and/or other molecular aberrations are potentially targetable by agents currently approved in the clinical settings or in various stages of clinical development.

There is increasing evidence to demonstrate that breast cancer metastases often acquire new molecular aberrations compared to their matched primary tumors, and that different treatment-resistant clones may emerge over time. While the clinical relevance of these phenomena is not yet well understood, obtaining biopsies from the metastatic lesions could help uncover mechanisms of resistance and thus help refine treatment decisions. There is currently an exponential growth of molecular screening initiatives, at the national, single hospital or even at the private laboratory level, aimed at sequencing tumor DNA from breast cancer patients in order to identify "actionable mutations" that could be targeted in the clinical setting. However, such isolated approaches have major limitations as they generate fragmented results that might lose their potential and impact if not contextualized in a proper, structured clinical setting. Moreover, the use of modern techniques is likely to result in breast cancer being further reclassified into smaller molecular subpopulations. Clinical trials for these molecularly defined small subpopulations are likely to require international collaboration in order to meet recruitment objectives. Ultimately, the aim of AURORA is to improve the outcomes of all patients diagnosed with metastatic breast cancer.

Study design and objectives

Patients are eligible if they are 18 years or older, either female or male, and have not received more than 1 type of treatment from the time metastases were discovered, metastasi(e)s has just been diagnosed or their disease has come back (disease relapse). Biopsy samples from both the primary and metastatic (or relapsed) tumor will be collected for central analyses, together with blood, serum and plasma samples. Any samples not analyzed immediately will be stored in an independent bio-repository to enable future (not yet defined) research aimed at better understanding metastatic breast cancer. In summary, the main objectives of AURORA are to better understand the genetic aberrations in metastatic breast cancer and to discover the mechanisms of response or resistance to therapy, in order to ultimately identify the "right therapy for each individual patient". At the same time, patients with genetic aberrations that are being targeted by new drugs in development will be offered the possibility to participate in clinical trials, when approved and available in their

Study report:

First results from the AURORA study were presented at the ESMO 2019. A total of 381 patients recruited until November 2017 and with assessable data were included in the molecular analyses. The pathological subtype distribution included 228 hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, 51 HER2-positive and 71 triple-negative (TNBC) tumors; for 31 cases the information was not available. 292 (77%) patients were treatment naïve in the metastatic setting including 76 patients (20%) with de novo metastatic disease. The analysis focused on patients with paired samples (primary and metastases) and showed increased number of mutations in the metastatic samples. Hence, the findings shed light on the molecular makeup of several clinically-relevant metastatic breast cancer categories [1]. The patients will be followed up for 10 years.

Reference:

Aftimos PG, Antunes De Melo e Oliveira AM, Hilbers F et al. First report of AURORA, the breast international group (BIG) molecular screening initiative for metastatic breast cancer (MBC) patients (pts). Ann Oncol 2019; 30 (suppl_3): iii47-iii64.

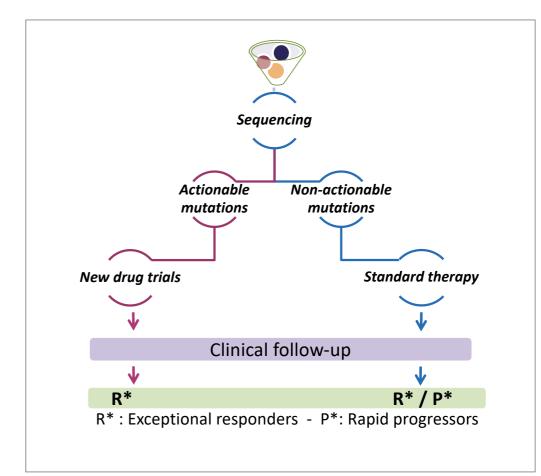
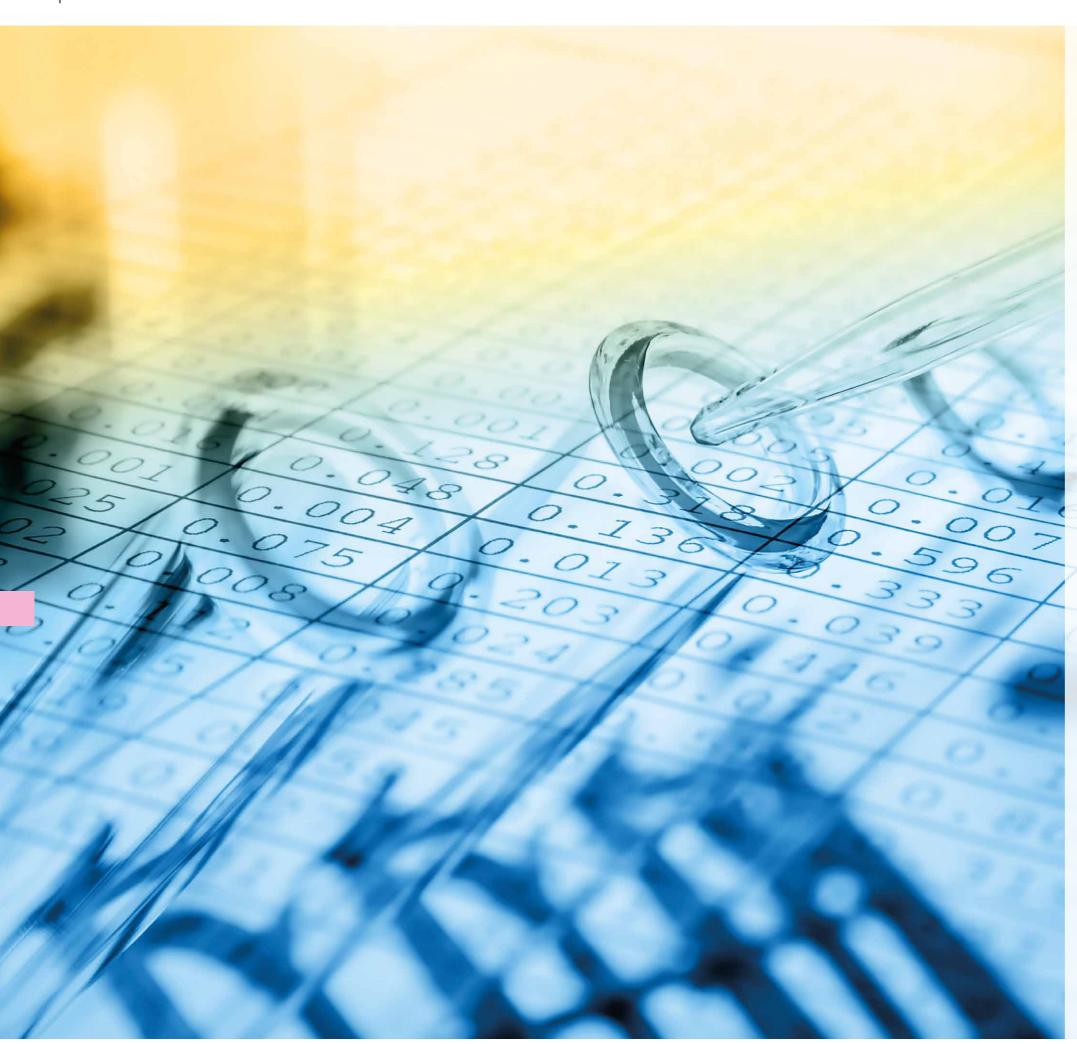


Figure 1: AURORA study design

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the study by recruitment of the patients and by providing biomaterial in a timely manner.

COLLABORATING STUDY GROUPS:


SPONSOR:
Breast International Group
(BIG)

COORDINATING
INVESTIGATOR:
Piccart Martine, MD,PhD
BIG chair and Head of
Oncology Department

Oncology Department Institute Jules Bordet, Brussels, Belgium

COORDINATING
INVESTIGATOR (GERMANY)
Benjamin Schnappauf
Sana Klinkum Offenbach,
Germany

Final_GBG_ASR_2019.indd 74-75 03.02.20 15:35

Studies in Follow-up

GBG 76: Pellelope	70
GBG 68: GAIN-2	80
GBG 87: PALLAS	83
GBG 82: OLYMPIA	85
GBG 75: INSEMA	87

Annual Scientific Report 2019 | Studies in Follow-up

CONTACT: Carmen Schmidt-Rau Clinical Project Management penelope@GBG.de

GBG 78: Penelope^B

Phase III study evaluating palbociclib (PD-0332991), a Cyclin-Dependent Kinase (CDK) 4/6 Inhibitor in patients with hormone-receptorpositive, HER2-normal primary breast cancer with high relapse risk after neoadjuvant chemotherapy

NCT01864746

PENELOPE^B is a prospective, international, multicenter, randomized, double-blind, placebocontrolled, post-neoadjuvant phase III study that has recruited 1,250 patients from approximately 300 sites in 11 countries.

Background

About one third of hormone receptor (HR)positive, HER2-normal breast cancer patients with residual disease after neoadjuvant chemotherapy have a substantial risk of relapse (von Minckwitz et al. J Clin Oncol 2012). Those patients can be identified using the validated clinical-pathologic stage-estrogen/grade (CPS-EG) scoring system (Figure 1A), ranging from 0-6 (Jeruss et al. J Clin Oncol 2008; Mittendorf et al. I Clin Oncol 2011).

Palbociclib is an oral, highly selective inhibitor of CDK4/6 kinase activity that prevents cellular DNA synthesis by inhibiting cell cycle progression (Finn et al. Breast Cancer Res 2009). Luminal tumors have shown sensitivity to palbociclib. In a phase II study, palbociclib extended progression free survival in combination with letrozole as first-line hormonal treatment for 2012). Palbociclib has also shown single agent activity in patients with relapsed HR-positive advanced breast cancer (DeMichele et al. Cancer Res 2011). Based on the recent results from the PALOMA-2 (Finn et al. N Engl J Med 2016) and PALOMA-3 trials (Turner et al. N Engl J Med 2015), palbociclib was approved by European Medicines Agency (EMA) for the treatment of HR-positive, HER2-negative advanced or metastatic breast cancer in combination with an aromatase inhibitor as initial endocrine-based therapy in postmenopausal women or in combination with fulvestrant in pretreated patients.

In the Penelope^B study we aim to demonstrate that one year of post-neoadjuvant treatment with palbociclib, in addition to standard antihormonal therapy, provides a superior invasive disease free survival and an acceptable safety profile compared to placebo in women with HRpositive, HER2-normal early breast cancer who did not obtain a pathological complete response after taxane-containing neoadjuvant chemotherapy and are at high risk of relapse (CPS-EG score ≥3 or 2 if ypN+) (Marmé et al. Eur J Cancer

Study design and objectives

Penelope^B primarily aims to compare invasive disease-free survival (iDFS) between the two

In addition, iDFS excluding second non-breast cancers, overall, distant disease-free and local advanced breast cancer (Finn et al. Cancer Res recurrence-free survival, iDFS per treatment

group in patients with luminal-B tumors, compliance and safety, patient reported outcomes (quality of life), health economics, drug-drug interaction-potential for the palbociclib - endocrine combination therapy (in a subset of this patient population) as well as correlations between drug exposure and efficacy and safety findings will be analyzed. The study includes post- as well as premenopausal women and allows the use of different endocrine therapies. Furthermore, the Penelope^B study will also address translational research questions, such as the role of biomarkers involved in the CDK4/6 pathway.

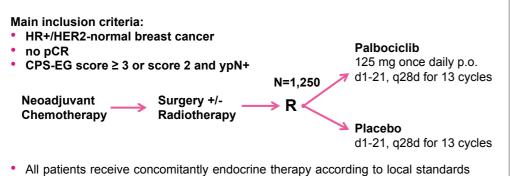
Based on the outcome of the first efficacy interim analysis (April 2017), the Independent Data Monitoring Committee (IDMC) has recommended to adapt the patient's number of the trial to a total of 1,250 patients.

Study report

Penelope^B started recruitment with the first randomized patient in Germany in February 2014. The first international patient was randomized in Spain in October 2014. The recruitment was closed in December 2017. An efficacy interim analysis was recently performed. Final analysis on the primary endpoint and secondary efficacy endpoints (except for OS) will be conducted when 290 iDFS events have been observed, which is estimated to occur about 6.5 years after first patient in.

We are thanking all participating centers for their commitment and efforts so far. We would like to encourage all sites to continue to support the Penelope^B study by timely provision of the biomaterial and the documentation of the patients.

COLLABORATING STUDY GROUPS:


SPONSOR:

GBG Forschungs GmbH

INTERNATIONAL STUDY CHAIR:

Prof. Dr. Gunter von Minckwitz German Breast Group. Neu-Isenburg

COORDINATING **INVESTIGATOR (GERMANY):** Prof. Dr. Toralf Reimer Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt Rostock

- (5-10 years, might have started before inclusion)
- Patients will be followed until any invasive local, regional or distant recurrence, diagnosis of secondary malignancy, unacceptable toxicity, withdrawal of consent or study termination

Figure 1: Penelope^B study design

Final GBG ASR 2019.indd 78-79

Annual Scientific Report 2019 | Studies in Follow-up

CONTACT:

Dr. Cornelia Schneider-Schranz Clinical Project Management gain2@GBG.de

GBG 68: GAIN-2

Neo-/adjuvant phase III trial to compare intense dose-dense chemotherapy to tailored dose dense chemotherapy in patients with high-risk early breast cancer

NCT01690702

GAIN-2 is a neo-/ adjuvant, prospective, multicenter, randomized, open-label phase III trial that has recruited 2,887 patients from 136 sites in Germany.

Background

Combined chemotherapy regimens always require compromises regarding the doses of each drug and the treatment intervals due to acute and cumulative toxicities. The sequential administration of monotherapies, however, allows the administration of high doses of single substances and dose-dense intervals. Such intense, dosedense chemotherapy regimens have shown to improve the survival in early breast cancer patients with high risk of recurrence when compared to conventional dosed chemotherapy (Möbus et al. | Clin Oncol 2010; Citron et al. | Clin Oncol 2003). However, both of these dosedense regimens tested so far used solvent-based taxanes (paclitaxel and docetaxel) and nowadays outdated comparators.

Nab-paclitaxel, the nanoparticle albumin-bound form of paclitaxel, has shown a better toxicity profile and higher efficacy compared to solvent-based taxanes and might thus be preferred in an intense dose-dense regimen.

It is long known from the NSABP-B18 trial and others that neoadjuvant chemotherapy is as effective as adjuvant chemotherapy in preventing recurrences (Wolmark et al. J Natl Cancer Inst Monogr 2001).

The hypothesis studied by GAIN-2 is that in patients with early node-positive or high-risk node-negative breast cancer, a pre-defined, intense, dose-dense, regimen (EnPC – epirubicin followed by nab-paclitaxel followed by cyclo-phosphamide) is more effective compared with a dose-dense regimen, where single doses are adjusted depending on individual hematological and non-hematological toxicities (dtEC-dtD - dose-dense, dose-tailored epirubicin and cyclo-phosphamide followed by dose-dense, dose-tailored docetaxel).

The maximum dose of nab-paclitaxel in this setting has been explored in a run-in phase included in the study design. It has been shown that patients can safely be treated with a biweekly dos-

age of 330 mg/m² nab-paclitaxel (Möbus et al. J Clin Oncol 2013) which is now used for the main phase of the study.

Study design and objectives

GAIN-2 primarily aimed to compare invasive disease-free survival after neo-/adjuvant chemotherapy with EnPC or dtEC-dtD in patients with primary node-positive or high risk node negative breast cancer. In addition, overall, distant disease-free, locoregional relapse-free, local relapse-free, regional relapse-free and brain metastasis-free survival, compliance and safety, side-effects of taxanes, pCR rate in patients treated with neoadjuvant therapy and treatment effects by intrinsic subtypes, number of involved nodes and Ki-67 are compared between the two treatment arms. Breast conservation rate between adjuvant and neoadjuvant patients as well as the survival endpoints by pCR will be also assessed.

In addition, GAIN-2 offers the opportunity to address a range of translational research questions, which are summarized bellow.

An amendment of the study protocol (effective as of 1st August 2016) allowed treatment of patients with the same regimens in the neo-adjuvant setting. All neoadjuvant patients with HER2-positive disease received trastuzumab and optional pertuzumab at doses and duration in concordance with current treatment guidelines.

Substudies

Substudy subcutaneous trastuzumab

In addition to the main protocol, 226 HER2-positive patients of the GAIN-2 trial were randomized to receive further trastuzumab subcutaneously (s.c.) instead of intravenously (i.v.) after completion of the chemotherapy according to current guidelines. The patients were randomized between trastuzumab application into thigh or abdominal wall and the preference of the patients is determined. In addition, pharmacokinetic measurements were performed in 36 patients (18 per group).

Substudy biology of lymph node metastases

The substudy on biology of lymph node metastases examines primary tumors and corresponding axillary lymph nodes for biologically relevant factors involved in lymphogenic and distant tumor cell spread. Written informed consent and the availability of primary tumor and axillary lymph node tissue are crucial for this translational substudy.

Substudy on SNP (Single Nucleotide Polymorphisms)

This observational substudy aims to associate the germline genotype of the patient with the treatment response, long-term prognosis and the molecular profile of the tumors in both randomization arms.

Substudy on ovarian function

To define the risk of premature ovarian failure and loss of fertility with modern regimens, the hormone levels of estradiol, Follicle-Stimulating Hormone (FSH) and Anti-Müllerian Hormone (AMH) in addition to antral follicle counts measured by ultrasound are assessed.

Study report

Between October 2012 and July 2017, a total of 2,887 patients have been enrolled in the main study (2,289 in the adjuvant setting and 598 in the neoadjuvant setting from 136 recruiting sites in Germany) [1,2]. The trastuzumab substudy has enrolled 226 patients between November 2013 and August 2017.

Pharmacokinetic analysis of a s.c. injection of trastuzumab into the thigh or into the abdominal wall in patients with HER2-positive primary breast cancer (BC) treated within the neo-/adjuvant GAIN-2 study showed that bio-availability of s.c. trastuzumab as reflected by peak and total exposure measured in cycle 7 was

approximately 30 % higher if the antibody was administered into the thigh; no increased toxicity was observed. Study limitations were that no cross-over design was used and the number of patients who satisfied criteria for perprotocol-set was different in the arms [3].

Results of the pCR rates within the breast (ypT0/ is ypN0+) for the neoadjuvant setting demonstrated that the pCR rates for patients treated with iddEnPC were statistically significantly higher compared to those receiving dtEC-dtD as neoadjuvant chemotherapy (53.3 % [95 %CI 52.4 %-64.0 %] vs 49.7 % [95 %CI 43.8 %-55.5 %]; p=0.043). No significant difference for pCR was found within the breast cancer subtypes [4].

The first results of the ovarian substudy were presented at the SABCS 2017. The pooled analysis of 740 breast cancer patients aged ≤45 years treated with anthracycline or taxanebased chemotherapy (CT) within the GeparSixto, GeparSepto, GENEVIEVE and Gain-2 trials showed that nearly 70% of women regained premenopausal hormone levels of FSH and E2 within 2 years after the end of CT. Despite that, less than one third of the women maintain their fertility potential as predicted by AMH, indicating that AMH is a very sensitive marker for the prediction of fertility function after CT for early breast cancer [5]. Recently, an impact of chemotherapy-induced ovarian failure on longterm outcomes in young women with early

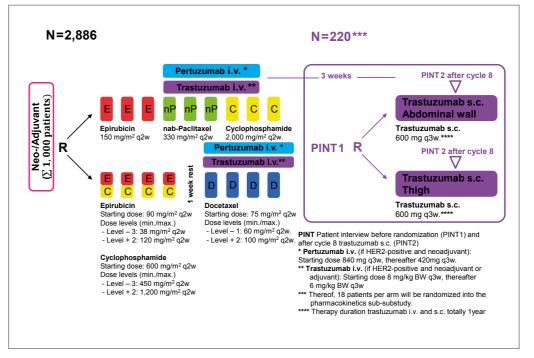


Figure 1: Study design of the GAIN-2 main study and the subcutaneous trastuzumab substudy

Final_GBG_ASR_2019.indd 80-81 03.02.20 15:35

COLLABORATING STUDY GROUPS:

SPONSOR: GBG Forschungs GmbH

STUDY CHAIR:
Prof. Dr. Volker Möbus
Universitätsklinikum Frankfurt,
Frankfurt am Main

breast cancer was presented at the ESMO 2019. Patients with chemotherapy-induced ovarian failure after anthracycline/taxane-based CT showed a better disease-free survival, especially in women with hormone-receptor positive tumors or younger than 30 years. The improvement in disease-free survival translates into a survival advantage in patients with hormone-receptor positive early breast cancer [6].

Publications

- 1. Noeding S, Forstbauer H, Wachsmann G, et al. GAIN2: Adjuvant phase III trial comparing an intensified dose-dense adjuvant therapy with EnPC compared to a dose-dense, dose-adapted therapy with dtEC dtDocetaxel in patients with primary breast cancer and a high risk of recurrence. Ann Oncol 2014, 25 (suppl_4): iv90.
- Möbus V, Lück H-J, Forstbauer H, et al. GAIN-2: Adjuvant Phase III Trial to Compare Intense dose-dense (idd) Treatment with EnPC to Tailored dose-dense (dt) Therapy with dtEC-dtD for Patients with high-risk Early Breast Cancer: Results of the Second Safety Interim Analyses. Cancer Res 2016;76(4 Suppl): Abstract nr P1-13-05.

- 3. Möbus V, Mahlberg R, Janni W, et al. Pharmacokinetic results of a subcutaneous injection of trastuzumab into the thigh versus into the abdominal wall in patients with HER2 positive primary breast cancer (BC) treated within the neo-/adjuvant GAIN-2 study. Cancer Res 2018;78(4 Suppl):Abstract nr P5-20-09.
- 4. Moebus V, Noeding S, Ladda E, et al. Neo-/ adjuvant phase III trial to compare intense dose-dense (idd) treatment with EnPC to tailored dose-dense (dt) therapy with dtECdtD for patients with high-risk early breast cancer: results on pathological complete response (pCR) for patients treated within the neoadjuvant setting. J Clin Oncol 2018; 36.15 suppl.568.
- Furlanetto J, Thode C, Huober J, et al. Changes in hormone levels (E2, FSH, AMH) and fertility of young women treated with neoadjuvant chemotherapy (CT) for early breast cancer (EBC) [abstract]. Cancer Res 2018;78(4 Suppl):Abstract nr PD7-09.
- 6. Furlanetto J, Nekljudova V, Schneeweis A, et al. Impact of chemotherapy-induced ovarian failure (CIOF) on disease-free survival (DFS) and overall survival (OS) in young women with early breast cancer (EBC). Ann Oncol 2019;30 (Suppl_5), 180PD.

We are thanking all participating centers for their commitment and efforts so far. We would like to encourage all sites to continue to support the GAIN-2 study by transferring participants to the General Follow-up and to the self-reported outcome registry.

GBG 87: PALLAS

PALLAS: PALbociclib Collaborative Adjuvant Study

A randomized phase III trial of palbociclib with standard adjuvant endocrine therapy versus standard adjuvant endocrine therapy alone for hormone receptor positive (HR+) / human epidermal growth factor receptor 2 (HER2)-negative early breast cancer

NCT02513394

PALLAS (ABCSG 42, AFT-05, BIG 14-3) is a multicenter, prospective, international, randomized, open-label, adjuvant phase III study that has recruited 5,795 patients worldwide.

Background

Although many patients with HR-positive (HR+)/HER2-negative (HER2-) breast cancer may be cured of their disease with optimal local and systemic therapy, a significant number of patients with stage II and III disease will experience disease recurrence. Adjuvant endocrine therapy for breast cancer can be extremely effective, particularly with extension beyond 5 years, however disease recurrence can occur, with risk distributed over the decades following initial diagnosis. Methods to improve the efficacy of endocrine therapy, and delay the onset of resistance, are needed.

HR+ breast cancer biologically may demonstrate features suggestive of sensitivity to CDK4/6 inhibition with agents such as palbociclib. Given the demonstrated activity and safety of palbociclib in the first-line treatment of metastatic HR+/HER2- breast cancer, supporting FDA approval, there is interest in whether the benefits of CDK4/6 inhibition may translate into the adjuvant setting. The purpose of the PALLAS study is to determine whether the addition of palbociclib to adjuvant endocrine therapy will improve outcomes over endocrine therapy alone for HR+/HER2- early breast cancer. Assessment of a variety of correlative analysis, including evaluation of the effect of palbociclib in genomically defined tumor subgroups, is planned.

Study design and objectives

PALLAS primarily aims to compare invasive disease-free survival (iDFS) for the combination of at least 5 years endocrine therapy and 2-year palbociclib treatment versus at least 5 years endocrine therapy alone in patients with histologically confirmed HR+/HER2- invasive early breast

cancer. Secondary objectives are to compare iDFS excluding second primary cancers of non-breast origin, distant recurrence-free survival (DRFS), locoregional recurrences-free survival (LRRFS), overall survival (OS) and safety between the two arms. The principal translational research objective is to compare baseline tumor tissue to determine whether there is prognostic or predictive utility for defined genomic subtypes (luminal A, luminal B and non-luminal) with respect to iDFS and OS.

Clinical science objectives are to evaluate adherence to oral therapy in patients receiving palbociclib and endocrine therapy, to determine the association of body mass index (BMI) and race with the efficacy of palbociclib and endocrine therapy. Patient reported outcomes objectives are to compare patient-reported quality of life, fatigue, arthralgia, and endocrine symptoms between the two arms overall and by subgroups defined by age at randomization (≤ 50 and > 50) and initial endocrine therapy (tamoxifen and AI) at multiple pre-specified time points. Multiple tissue- and blood-based correlative studies are scheduled throughout the course of the PALLAS trial to evaluate potential markers of response and/or resistance in patients receiving endocrine therapy with palbociclib versus endocrine therapy alone. These sample analyses will be outlined in the TRANS-PALLAS manuals and guidelines, developed with the dedicated TRANS-PALLAS committee. The German Breast Group acts as a local study group for Germany and is responsible for the biobanking organization of the PALLAS study for non-US samples.

Study report

PALLAS recruited 5,795 patients worldwide (110 in Germany) between October 2015 and November 2018. Two interim efficacy analyses were planned for monitoring the futility and superiority, and are scheduled to occur when 33 % and 67 % of the total number of iDFS events are observed. The first interim efficacy analysis has already been carried out. The study participants are currently in the treatment or follow-up phase, depending on the time of randomization [1,2].

Publications

 Mayer E.L, Demichele A.M, Pfeiler G, Barry W, Metzger O, et al. PALLAS: PALbociclib Collaborative adjuvant study: A randomized phase 3 trial of palbociclib with standard adjuvant endocrine therapy versus standard adjuvant

CONTACT:

Dr. Cornelia Schneider-Schranz Clinical Project Management pallas@GBG.de

Final_GBG_ASR_2019.indd 82-83 03.02.20 15:35

Annual Scientific Report 2019 | Studies in Follow-up

COLLABORATING **STUDY GROUPS:**

ALLIANCE FOUNDATION TRIALS, LLC

SPONSOR: AFT (US), ABCSG (Non-US Sites)

INTERNATIONAL STUDY CHAIRS:

Dr. Erica L. Mayer Susan F Smith Center for Women's Cancers (US)

Dr. Angela DeMichele **Abramson Cancer Center (US)**

Prof. Dr. Michael Gnant ABCSG (AT)

STUDY CHAIRS GERMANY:

Dr. Sabine Schmatloch Elisabeth Krankenhaus, Kassel

endocrine therapy alone for HR+/HER2- early breast cancer. Ann Oncol 2017;28: 215TiP.

2. Mayer E, DeMichele A, Gnant M, Barry W, Pfeiler G, et al. PALLAS: PALbociclib CoLlaborative Adjuvant Study: A randomized phase 3 trial of palbociclib with standard adjuvant endocrine therapy versus standard adjuvant endocrine therapy alone for HR+/HER2- early breast cancer. Cancer Res 2018; 78(4 Suppl): OT3-05-08.

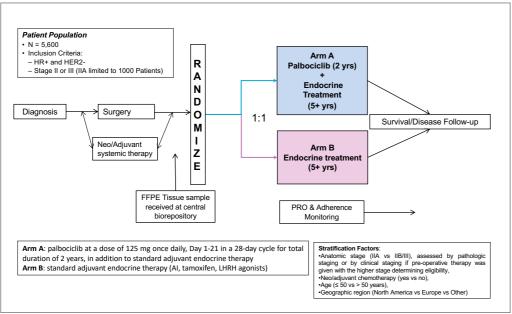


Figure 1: PALLAS study design

We are thanking all participating centers for their commitment and efforts so far. We would like to encourage all sites to continue to support the PALLAS study by transferring participants to the General Follow-up and to the self-reported outcome registry in a timely manner.

GBG 82: OLYMPIA

A randomized, double-blind, parallel group, placebo-controlled multi-center Phase III study to assess the efficacy and safety of olaparib versus placebo as adjuvant treatment in patients with germline BRCA1/2 mutations and high-risk HER2-negative primary breast cancer who have completed definitive local treatment and neoadjuvant or adjuvant chemotherapy

NCT02032823

OLYMPIA (BIG 6-13, NSABP B-55, D081CC0006) is a multicenter, double-blind, parallel group, placebo-controlled, randomized phase III trial that has recruited approximately 1,800 patients from 650 sites in 22 countries within approximately 4 years.

Background

Approximately 5 % of breast cancers are associated with a BRCA mutation, with approximately 60 % of those being associated with the BRCA1 gene (generally presenting with triple negative phenotype) and approximately 40% being associated with the BRCA2 gene (generally estrogen/progesterone positive phenotype) Mutations in either gene result in tumors that are deficient in homologous recombination. Currently, there are no approved treatments specific for germline BRCA1/2 mutated breast cancer patients and these patients are treated according to their hormone receptor and HER2 status.

Polyadenosine 5'diphosphoribase [poly (ADP ribose)] polymerisation (PARP) inhibition is a

novel approach to targeting tumors with deficiencies in DNA repair mechanisms. PARP enzymes are essential for repairing DNA single strand breaks. Inhibiting PARP leads to the persistence of single strand breaks, which can then, during the process of DNA replication, be converted to the more serious DNA double strand breaks. Tumors with homologous recombination deficiencies, such as breast cancers in patients with germline BRCA1/2 mutations, cannot accurately repair the DNA damage, leading to cancer cell death.

Olaparib is a potent PARP-1, -2 and -3 inhibitor, that is being developed as an oral therapy, for use as monotherapy (including maintenance) and for combination with chemotherapy and other anti-cancer agents. Olaparib has been shown to inhibit selected tumor cell lines in vitro and in xenograft and primary explant models as well as in genetic BRCA knockout models, either as a stand-alone treatment or in combination with established chemotherapies. Clinical studies have shown that olaparib monotherapy in patients with germline BRCA mutations offers potentially efficacious and less toxic cancer treatment compared with currently available chemotherapy regimens (Fong et al. N Engl J Med 2009; Tutt et al. Lancet 2010; Gelmon et al. Lancet Oncol 2011; Kaufman et al. J Clin Oncol 2015). The OLYMPIA study investigates for the first time the efficacy of olaparib compared with placebo in an adjuvant/post-neoadjuvant approach in patients with germline BRCA1/2 mutations and high-risk HER2-negative disease.

CONTACT:

Dr. Ioannis Gkantiragas **Clinical Project Management** olympia@GBG.de

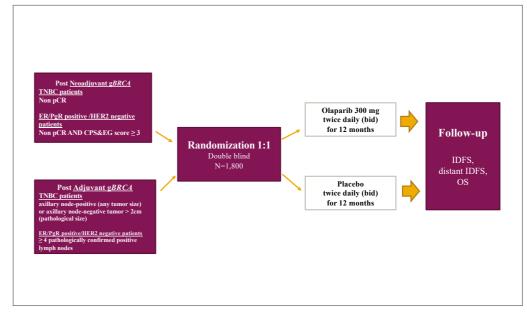


Figure 1: OLYMPIA study design

Final GBG ASR 2019.indd 84-85

COLLABORATING STUDY GROUPS:

SPONSOR:

INTERNATIONAL
PRINCIPAL INVESTIGATOR:
Prof. Dr. Andrew Tutt
King's College,
London (UK)

STUDY CHAIR GERMANY: Prof. Dr. Elmar Stickeler Universitätsklinikum Aachen

Study design and objectives

OLYMPIA primarily aims to assess the effect of adjuvant treatment with olaparib on invasive disease-free survival (IDFS). In addition, the safety and tolerability of adjuvant treatment with olaparib is a key objective. Secondary objectives are to assess the effect of adjuvant treatment with olaparib on overall survival (OS), distant disease-free survival (DDFS), the incidence of new primary cancers (contralateral invasive breast cancer, contralateral non-invasive breast cancer, ovarian cancer, fallopian tube cancer and peritoneal cancer), and patient reported outcomes (according to the FACIT- Fatigue and EORTC QLQ-C30 questionnaires). Moreover, the efficacy of olaparib will be assessed in patients identified as having a deleterious or suspected deleterious variant in either of the BRCA genes using variants identified with current and future germline BRCA mutation assays (gene sequencing and large rearrangement analysis) and the exposure to olaparib (in plasma) will be determined.

Translational research components include the exploration of methods for estimating OS adjusting for the impact of confounding by subsequent therapies, the investigation whether resistance mechanisms to olaparib can be identified through analysis of tumor and blood sample derivatives, and the determination of the

frequency and nature of *BRCA* mutation/s in tumor samples and comparison with germline *BRCA* mutation status. With an amendment of the study protocol, patients with HER2-negative/HR-positive disease are allowed to take part in the study.

Study report

OLYMPIA recruited a total of 1,836 patients worldwide (198 patients in Germany) between QII 2014 and QI 2018. Two interim analyses are planned for superiority and are scheduled to occur when 165 and 330 of the total number of iDFS events are observed [1, 2]. The end of the study (last patient out in the clinical follow-up) is estimated for 2028.

Publications

- Tutt J, Kaufmann B, Gelber R et al. OlympiA: A randomized phase III trial of olaparib as adjuvant therapy in patients with high-risk HER2-negative breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm). J Clin Oncol 2015; 33.15_ suppl.TPS1109.
- 2. Tutt A, Kaufmann B, Garber J et al. OlympiA: A randomized phase III trial of olaparib as adjuvant therapy in patients with high-risk HER2-negative breast cancer (BC) and a germline BRCA1/2 mutation (gBRCAm). Ann Oncol 2017; 28 (suppl_5):v43-v67;TIP216.

We are thanking all participating centers for their commitment and efforts so far. To facilitate timely analysis of the iDFS events we would like to encourage all sites to continue to support the OLYMPIA study by transferring participants to the General Follow-up and to the self-reported outcome registry.

Please also ensure that the biomaterial required is provided in a timely manner.

A high degree of censoring, which becomes necessary when iDFS assessment outcomes are not promptly entered, will negatively impact data quality.

GBG 75: INSEMA

Comparison of axillary sentinel lymph node biopsy versus no axillary surgery in patients with early-stage invasive breast cancer and breastconserving surgery: a randomized prospective surgical trial

NCT02466737

INSEMA is a prospective, multicenter, randomized trial that has recruited 5,505 patients from approximately 150 sites in Germany and approximately 20 sites in Austria.

Background

Although there is no doubt that the presence of lymph node metastases worsens prognosis of a patient, there is a lack of unambiguous evidence to support lymph node dissection. Axillary surgery for breast cancer is now considered as a staging procedure that does not seem to influence breast cancer mortality, since the risk of developing metastases depends mainly on the biological behavior of the primary tumor (seed-and-soil model). Women with breast cancer have benefitted greatly from a series of carefully conducted randomized controlled trials focusing on axillary surgery. Each successive trial showed that less surgery was better, as outcomes were the same and less surgical intervention resulted in fewer surgical complications (Fisher et al. N Engl J Med 2002; Rudenstam et al. J Clin Oncol 2006; Martelli et al. Ann Surg 2005; Veronesi et al. Ann Oncol 2005; Giuliano et al. Ann Surg 2010; Giuliano et al. JAMA 2011).

A high rate of loco-regional control could be achieved with multimodality therapy, even without axillary lymph node dissection (ALND). Despite increasing evidence disfavoring ALND, it remains part of widely recognized guidelines for breast cancer treatment. The modern approach in breast cancer care, which includes improved imaging, more detailed pathological evaluation, improved planning of surgical and radiation therapy, and more effective systemic treatment, emphasizes the need for ongoing re-evaluation of "standard" local therapy. The postsurgical therapy should be considered on the basis of biologic tumor characteristics rather than nodal involvement.

Study design and objectives

INSEMA was a prospective, randomized, surgical trial. Patients were randomized into two treatment arms in a 1:4 allocation for the first randomization and in a 1:1 allocation for the second randomization. The aim of the trial was to compare the invasive disease-free survival after breast-conserving surgery between patients who received no axillary surgery vs. patients who received sentinel lymph node biopsy (SLNB) and between node positive patients who received SLNB alone vs. patients with completion of ALND. Secondary objectives of the study were to compare the invasive disease-free survival after breast-conserving surgery between patients with no axillary surgery vs. node negative patients, between patients with no axillary surgery vs. node positive patients who received

CONTACT:

Dr. Cornelia Schneider-Schranz Clinical Project Management insema@GBG.de

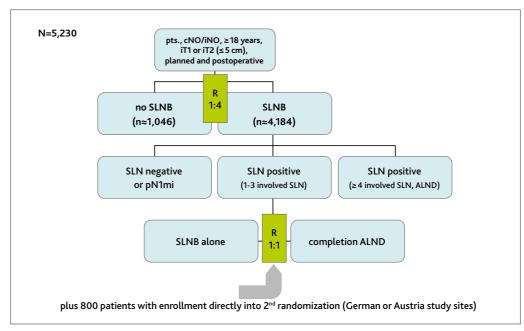


Figure 1: INSEMA study design after amendment 5

Final_GBG_ASR_2019.indd 86-87 03.02.20 15:35

88 Annual Scientific Report 2019 Studies in Follow-up

COLLABORATING STUDY GROUPS:

SPONSOR: University of Rostock

STUDY CHAIR: Prof. Dr. Toralf Reimer Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt Rostock SLNB alone, and between patients with no axillary surgery vs. node positive patients with completion of ALND. Furthermore, the study allows comparison of overall survival, locoregional disease-free survival (no tumor in the ipsilateral breast or ipsilateral supraclavicular, subclavicular, internal mammary or axillary nodes), ipsilateral axillary recurrence rate, distant disease-free survival, and quality-of-life between arms as well as the event-free survival in subgroups according to age ($< 65 \text{ vs.} \ge 65 \text{ years}$), grading G1/2 vs. G3), tumor size (\leq 2 vs. > 2cm), and study site (German vs. Austrian sites in randomization 2). INSEMA also has an attached translational program including biobanking of tumor tissue and serum samples. One translational objective is to determine the value of Memorial Sloan-Kettering Cancer Center nomograms in predicting involved sentinel nodes and positive non-sentinel nodes after positive SLNB.

An amendment of the study protocol (version 15.09.2016) included the following changes: a) within the inclusion criteria: patients with age at diagnosis ≥ 18 years can be enrolled in the study; histological confirmation of the unilateral primary invasive carcinoma of the breast can be also done by open biopsy; multifocal or multicentric tumors are allowed if breast-conserving surgery is planned; patients with SLNB and pN+ (sn) (1-3 macrometastases, stage pN1a) will undergo a second randomization to either SNLB alone or completion ALND; patients with ≥ 4 metastatic SLN should undergo completion ALND; b) within the exclusion criteria: patients with history of malignancy within the last 5 years as well as pregnant or lactating patients are excluded from the study; c) adaptation of the postoperative radiotherapy: patients with ≥ pN2a (≥ 4 involved axillary lymph node metastases) should receive regional nodal irradiation and d) changes in the randomization 2: patients from the German study sites can be also enrolled directly in the randomization 2.

Study report

Between September 2015 and April 2019, a total of 5,501 patients from 151 recruiting centres have been enrolled in the first randomization and 518 patients in the second randomization. The study is now in follow-up phase with patients being fol-

lowed for 5 years. Final analysis is planned for 2024. The first analysis of patient's characteristics showed that of the 1,001 breast carcinomas included, 96.9 % were hormone receptor positive, 8.5 % were HER2-positive and only 5.4 % of all cases were tumor grade 3 (G3). Pathological analysis of 751 SLNBs showed that 83.0% (n=623) of patients had negative nodal status (pN0), 2.8 % (n=21) micrometastasis (pN1mi), 12.9 % (n=97) 1–2 macrometastases and 1.3 % (n=10) \geq 3 macrometastases. The case rate of 85.8% without demonstrable axillary lymph node macrometastasis was significantly above the 70% predicted at protocolling. [2]. The second randomization recruited slower than expected due to the following main reasons: 1) as outlined above, the 12.9 % rate of one or two macrometastases after SLNB in the INSEMA study population was lower than expected; 2) around 20 % of patients refused the second randomization; 3) there was a slower than expected accrual at the Austrian centers, which only recruited for the second randomization. Lack of knowledge of nodal status when SLNB is avoided represents a new challenge for the postoperative tumor board. In particular decisions on chemotherapy for luminal-like tumors and irradiation of the lymphatics (excluding axilla) must be guided by tumor biological parameters [2-4].

Publications:

- 1. Reimer T, von Minckwitz G, Loibl S et al. Comparison of axillary sentinel lymph node biopsy versus no axillary surgery in patients with early-stage invasive breast cancer and breast-conserving surgery: a randomized prospective surgical trial. The Intergroup-Sentinel-Mamma (INSEMA)-Trial. Cancer Res 2017;77(4 Suppl): OT2-04-02.
- Reimer T, Stachs A, Nekljudova V, et al. First Results Following Commencement of the Intergroup-Sentinel-Mamma (INSEMA) Trial. Geburtshilfe Frauenheilkd. 2017;77(2):149-157.
- 3. Reimer T. Update INSEMA-Studie. 38. Jahrestagung Deutsche Gesellschaft für Senologie 2018; oral presentation.
- Reimer T. Update INSEMA-Studie. 39. Jahrestagung Deutsche Gesellschaft für Senologie 2019; oral presentation.

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the INSEMA study by transferring participants to the General Follow-up and to the self-reported outcome registry in a timely manner.

Final_GBG_ASR_2019.indd 88-89 03.02.20 15:35

l 91

Completed Studies

GBG 88: GeparX 92

Final_GBG_ASR_2019.indd 90-91 03.02.20 15:35

Annual Scientific Report 2019 | Completed Studies ______

CONTACT: Konstantin Reißmüller Clinical Project Management geparx@GBG.de

GBG 88: GeparX

Investigating denosumab as an add-on to neoadjuvant chemotherapy in RANK/L-positive or RANK/L-negative primary breast cancer and two different nab-paclitaxel schedules in a 2x2 factorial design

NCT02682693

GeparX is a multicenter, prospective, 2x2 randomized, open-label, phase IIb study that will recruit 778 patients from approximately 50 sites in Germany within 18 months.

Background

RANK ligand (RANKL), a key factor for bone remodeling and metastasis, is crucial for the development of mouse mammary glands during pregnancy. RANKL functions as a major paracrine effector of the mitogenic action of progesterone in mouse and human mammary epithelium via its receptor RANK and has a role in ovarian hormone-dependent expansion and regenerative potential of mammary stem cells. Pharmacologic inhibition of RANKL attenuates the development of mammary carcinoma and inhibits metastatic progression in multiple mouse models (Dougall WC et al. Clin Cancer Res 2012). In a retrospective analysis of 601 patients treated with anthracycline-taxane based chemotherapy from the GeparTrio study, we showed that an elevated immunohistochemical expression of RANK was present in 14.5 % of patients overall

(Pfitzner BM et al. Breast Cancer Res Treat 2014). The ABCSG-18 study showed that adjuvant denosumab (a clinically available antibody against RANKL) reduces clinical fractures, improves bone health, and can be administered without added toxicity (Gnant M et al. Lancet 2015). Moreover, denosumab showed a trend in improvement of disease-free survival in postmenopausal woman with hormone receptor positive breast cancer (Gnant M et al. Cancer Res 2016). It appears therefore reasonable to test denosumab in patients with primary breast cancer as an adjunct to neoadjuvant chemotherapy for its ability to increase the pathological complete response (pCR) rate and improve outcome overall and in relation to the expression of RANK/L. Since in the GeparSepto study nab-paclitaxel led to an increased pCR rate compared to standard solvent-based paclitaxel, nab-paclitaxel has been chosen as backbone chemotherapy. Two different nab-Paclitaxel regimens will be compared.

Study design and objectives

GeparX co-primary aims are to compare the pCR (ypT0 ypN0) rates of neoadjuvant treatment with or without denosumab in addition to backbone treatment consisting of nab-paclitaxel (nP) 125 mg/m² weekly (+ carboplatin [Cb]) followed by epirubicin (E) and cyclophosphamide (C) or nP 125 mg/m² day 1,8 q22 (+ Cb) followed by EC plus anti-HER2 treatment (i.e. trastuzumab/

pertuzumab in case of HER2-positive status) and to compare the pCR (ypT0, ypN0) rates of nP 125 mg/m² weekly (+ Cb) followed by EC or nP 125 mg/m² day 1,8 q22 (+ Cb) followed by EC plus anti-HER2 treatment. Cb will be administered concomitantly to nP for patients with triple-negative breast cancer (TNBC). Secondary objectives are to test for interaction of denosumab treatment with RANK expression.

of denosumab treatment with RANK expression, to assess the pCR rates per arm in subgroups and according to RANK immunohistochemical expression (high/low), pCR rates according to other definitions, response rates of the breast tumor and axillary nodes, breast conservation rate, toxicity and compliance as well as to determine loco-regional invasive recurrence free survival, distant-disease-free survival, invasive disease-free survival, event-free survival and overall survival for all treatment arms and according to stratified subpopulations. Further secondary objectives are to compare RANK/L expression and Ki-67 from baseline to surgery, to correlate response measured by best appropriate imaging method after the first two cycles of treatment with pCR, to assess mammographic density-changes induced by denosumab and to assess quality of life with a focus on persisting peripheral sensory neuropathy using the FACT-Taxane questionnaire.

In addition, GeparX offers an opportunity to address a range of translational research questions which are summarized below.

An amendment of the study protocol (approved on 27th of July 2017) included the following changes: a) implementation of a HER2-positive substudy in which patients with HER2-positive breast cancer receive trastuzumab in addition to pertuzumab throughout the main trial; after surgery the patients will change to standard Herceptin®; safety and compliance of the patients participating in the substudy will be reported descriptively in treatment arms and b) the GeparPET substudy (designed to investigate whether the presurgical staging with PET-CT in addition to conventional presurgical staging methods can decrease the rate of mastectomy in patients treated with neoadjuvant chemotherapy) has been stopped for futility as recommended by the IDMC based on the interim analysis performed.

Substudies

Pharmacogenetic substudy

The direct involvement of genetic markers in the metabolism and the pharmacokinetic of a drug as well as the influence of the inherited genetic trait on the molecular profile of the tumor could have an influence on an individual's prognosis. Aim of this substudy is therefore to analyze the potential association between the germline genotype of the patient and treatment response, toxicities, long term prognosis, molecular profile of the tumor and breast cancer risk.

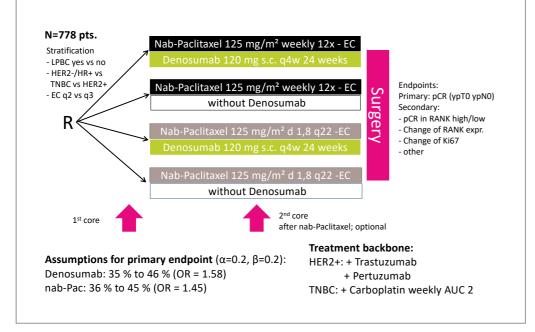


Figure 1: GeparX study design

Figure 2: GeparX recruitment as of 31st December 2019

Final_GBG_ASR_2019.indd 92-93 03.02.20 15

DTC substudy

The persistence of disseminated tumor cells (DTC) in the bone marrow after adjuvant chemotherapy has been ascertained as an independent predictor for poor disease-free survival, cancer-specific and overall survival (Braun et al. N Engl J Med 2005; Janni et al. Clin Cancer Res 2011). Furthermore, denosumab inhibits osteoclastic differentiation by binding to RANK-ligand (RANKL), thereby preventing the interaction between RANKL and its corresponding RANK-receptor (Casas et al. Breast 2013). Aim of this substudy is to investigate whether the application of denosumab in terms of an add-on neoadjuvant treatment eradicates DTCs in the bone marrow of breast cancer patients.

Substudy on urinary miRNA sampling (UMS)

Aberrant expression profiles of microRNAs (miRNAs) with subsequent functional consequences on target gene regulation in physiological and pathological pathways could already be set in clear association with breast cancer. Aim of the substudy is to evaluate a specific microRNA pattern in urine specimen as an innovative tool for subtype-specific diagnosis of breast cancer (HER2-positive vs. TNBC).

Study report

GeparX randomized a total of 780 patients between February 2017 and April 2019 [1-2]. An interim safety analysis included 202 patients randomized to denosumab and nab-paclitaxel treatment (101 patients with weekly and 101 patients with nab-paclitaxel d1,8 q22), of them 196 started treatment, demonstrated that the addition of denosumab to neoadjuvant chemotherapy did not increase toxicity. Moreover, weekly nab-paclitaxel resulted in a higher rate of treatment discontinuations mainly due to non-serious adverse events (AEs), whereas the addition of carboplatin in TNBC resulted in a higher rate of serious AEs (SAEs). First results of the GeparX study were presented at SABCS 2019. The addition of denosumab to neoadjuvant chemotherapy did not increase the pCR rate (41 % with denosumab vs. 43 % without;

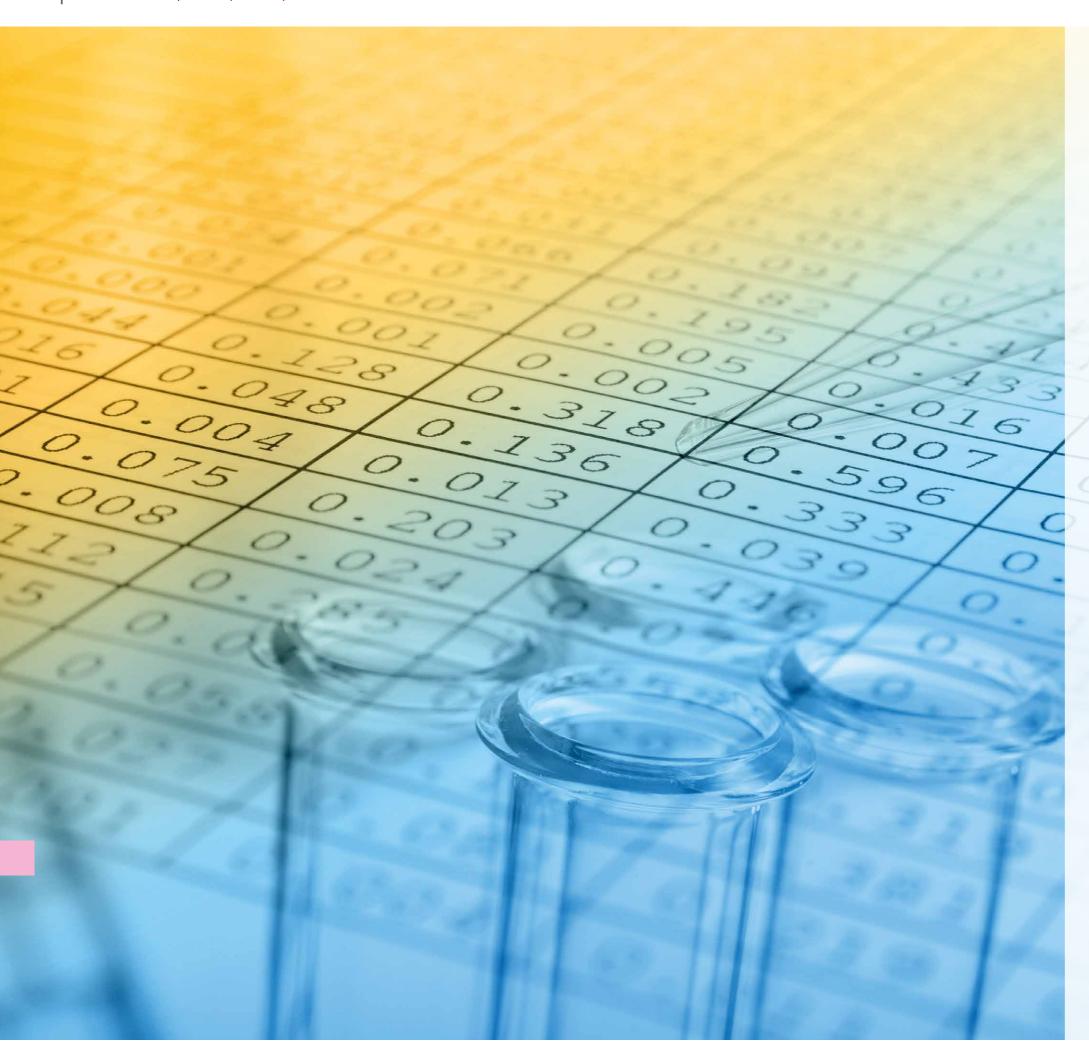
p=0.582). Nab-paclitaxel 125 mg/m² weekly resulted in a significantly higher pCR rate than given d1,8 q22 (45 % vs 39 %; p=0.062). In contrast, a higher rate of toxicity (SAEs) and a higher rate of treatment discontinuations mainly due to AEs was observed in nab-paclitaxel 125 mg/m² administered weekly compared to nab-paclitaxel d1,8 q22. In TNBC the optimized neoadjuvant chemotherapy with nab-paclitaxel 125 mg/m² weekly plus carboplatin followed by EC demonstrated a pCR rate of at least 60 % [4]. Further translational research (e.g. RANK expression) is ongoing.

Publications

- Kümmel S, von Minckwitz G, Nekljudova V, Dan Costa S, Denkert C, Hanusch C, Huober J, Jackisch Ch, Paepke S, Blohmer J U, Untch M, Schneeweiss A, Loibl S. Investigating Denosumab as add-on neoadjuvant treatment for hormone receptor-negative, RANK-positive or RANK-negative primary breast cancer and two different nab-Paclitaxel schedules - 2x2 factorial design (GeparX). J Clin Oncol 2016; 34.15_suppl.TPS635.
- Kümmel S, von Minckwitz G, Vladimirova V et al. Investigating Denosumab as an add-on neoadjuvant treatment for RANK/L-positive or RANK/L-negative primary breast cancer and two different nab-Paclitaxel schedules -2x2 factorial design (GeparX). 38. Jahrestagung Deutsche Gesellschaft für Senologie 2018; poster.
- 3. Kümmel S, Wimberger P, von Minckwitz G et al. Investigating denosumab as an add-on neoadjuvant treatment for RANK/L-positive or RANK/L-negative primary breast cancer and two different nab-paclitaxel schedules 2x2 factorial design (GeparX) an interim safety analysis. J Clin Oncol 2018; 36.15 suppl.569.
- 4. Blohmer JU, Link T, Kümmel S, et al. Investigating denosumab as an add-on treatment to neoadjuvant chemotherapy and two different nab-paclitaxel schedules in a 2x2 design in primary breast cancer - First results of the GeparX study. SABCS 2019; GS3-01, oral presentation.

We are thanking all participating centers for their commitment and efforts so far. We would kindly like to encourage all sites to continue to support the study by providing the remaining biomaterial in a timely manner and by entering participants in the General Follow-up.

COLLABORATING STUDY GROUPS:


SPONSOR: GBG Forschungs GmbH

STUDY CHAIRS:

Prof. Dr. Jens-Uwe Blohmer Brustzentrum Charité-Universitätsmedizin, Berlin, Germany

Prof. Dr. Sibylle Loibl German Breast Group, Neu-Isenburg

Final_GBG_ASR_2019.indd 94-95 03.02.20 15:35

Follow-up Activities

Patient Self-Reported Outcome (PSRO)	98
General Follow-Up Database and eCRF	98
Current Trials in Follow-Up	99
Neoadjuvant studies	100
Adjuvant studies	102

Final_GBG_ASR_2019.indd 96-97 03.02.20 15:35

8 Annual Scientific Report 2019 | Follow-up Activities ______

Follow-up Activities 2019

Long-term follow-up of early breast cancer trials is considered highly important as treatment effects might increase, maintain or decrease over time and have to be put into relation with late or chronic toxicities. However, collection of long-term follow-up is very often an near-impossible task due to the logistical and financial burden for study sites and sponsors.

Patient Self-Reported Outcome (PSRO)

To improve follow-up and reduce the workload for the trial sites, we developed a concept to use a Patient Self-Reported Outcome (PSRO) registry for long term follow-up in the GBG early breast cancer trials.

Study participants are invited by the site investigator to join the PSRO registry. They consent that their name, address, and the unique study identifier are being collected and to regularly receive health status questionnaires. German privacy laws and good clinical practice (GCP) regulations forbid the storage of patient-identifying data by the sponsor. Therefore, we developed a registry to collect PSRO with a strict separation of patientidentifying data and pseudonymized medical data via a data trustee. The data trustee is financially and organizationally independent from the GBG. The data trustee is handling names and addresses of the patients with a database strictly not accessible by GBG. Triggered by GBG, the trustee sends a questionnaire asking for current health status, including date and site of relapse, secondary malignancies, and date of death. The questionnaires may also be filled in by a third person

in case of death. Forms are to be sent to GBG using only the unique study identifier as pseudonym. For address changes or withdrawal of consent, another form can be returned to the trustee. Thus, GBG links updated data with the original study database and informs the site about their patients.

In 2019 we changed the data trustee to the ZKS (Zentrum für Klinische Studien Köln) at the University of Cologne. This process led to some delay in sending out the questionnaires. In September 2019, we distributed a letter to all participants with information about the changes, the new privacy laws (EU-GDPR) and a new questionnaire including questions about adverse events and quality of life.

Currently over 12,000 participants from 20 trials and 269 sites are included in this registry.

General Follow-Up Database and eCRF

Follow-up documentation over different studies and long timespans is a burden for the sites due to different systems, case report forms (CRFs), schedules and procedures. To mitigate this we developed a unique general follow-up database to document follow-up for all trials with the same electronic Case Report Form (eCRF). This eCRF is simplified as much as possible to collect only the basic information necessary for analysis of the long-term endpoints of our neoadjuvant and adjuvant trials. All these items can be collected during routine aftercare without trial specific examinations.

In November 2019 we established a new set of edit-checks for these eCRF to facilitate date entry and improve data quality.

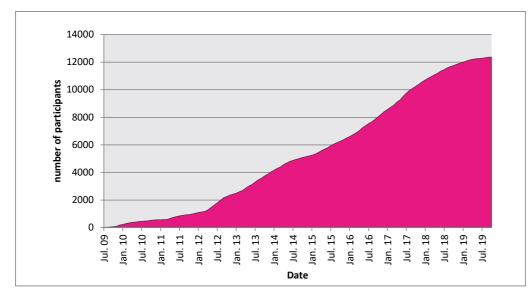


Figure 1: Patient self-reported outcome participants

Current Trials in Follow-up

The follow-up status of the GBG trials is presented in Table 1

	Trial	N (patients)	PSRO patients	FU Completeness
GBG: 18	GeparDuo	907	26	40,4%
GBG: 24	GeparTrio	2,357	236	44,3%
GBG: 32	ICE	1,358	197	49,1%
GBG: 33	GAIN	2,995	990	65,1%
GBG: 36	Natan	693	78	50,9%
GBG: 40	GeparQuattro	1,507	286	51,3%
GBG: 44	GeparQuinto	2,572	663	56,2%
GBG: 52	ICE-2	391	150	58,3%
GBG: 53	PANTHER	772	178	26,7%
GBG: 66	GeparSixto	588	338	61,5%
GBG: 68	GAIN-2	2,864	2,246	75,6%
GBG: 69	GeparSepto	1,203	789	68,4%
GBG: 70	Dafne	65	52	51,5%
GBG: 74	Genevieve	333	205	46,0%
GBG: 75	Insema	5,543	2,157	62,2%
GBG: 84	GeparOcto	945	722	72,1%
GBG: 89	GeparNuevo	174	128	44,9%
GBG: 90	GeparOla	107	54	38,6%

Table 1: Status of the GBG trials in follow-up (FU-completeness according to Clark, Lancet 2002;359:1309)

Final_GBG_ASR_2019.indd 98-99 03.02.20 15:35

While we desire to increase follow-up completeness for all of our studies, we would like to draw special attention to selected neoadjuvant and adjuvant studies that are planned to be analyzed and/or published in the near future.

Neoadjuvant studies

GeparOcto (GBG 84, NCT 02125344)

is a multicenter, prospective, randomized openlabel phase III study that has recruited 961 patients.

The study compared efficacy and safety of two chemotherapy regimens in high-risk early breast cancer: sequential treatment with intense dosedense epirubicin, paclitaxel, and cyclophosphamide (iddEPC) and weekly treatment with paclitaxel plus non-pegylated liposomal doxorubicin (M) with additional carboplatin (PM(Cb)) in triple-negative breast cancer. Pathological complete response was comparable overall and in subgroups. (Schneeweiss et al. Eur | Cancer, 2019). A substudy on supportive anemia treatment randomized 123 patients to investigate the use of the parenteral iron preparation ferric carboxymaltose compared to treatment of physician's choice. No difference was found in efficacy between treatments for chemotherapyinduced anemia (Tesch et al. Ann Oncol 2019).

For timely analysis of survival endpoints, planned to be presented at ASCO 2020, we would encourage all participating sites to provide follow-up data for their patients and answer queries.

BRIGHTNESS (GBG 81, NCT 02032277)

is a multicenter, double-blind, placebo-controlled, randomized phase III trial that has globally recruited 634 patients (55 patients in Germany).

The study compared paclitaxel plus carboplatin plus Poly(ADP-ribose) polymerase (PARP) inhibitor veliparib with paclitaxel plus carboplatin

and with paclitaxel alone, each followed by standard neoadjuvant chemotherapy with doxorubicin/cyclophosphamide in triple-negative breast cancer (TNBC) patients. Overall, an addition of veliparib to neoadjuvant chemotherapy did not increase the pCR rate in the breast and lymph nodes in TNBC patients. In contrast, the addition of carboplatin to paclitaxel resulted in a significant improvement in pCR rates compared to paclitaxel alone. The increased toxicity of carboplatin with or without veliparib did not impact the delivery of neoadjuvant chemotherapy (Loibl et al. Lancet Oncol. 2018). The assessment of homologous recombination deficiency (HRD) status in 438 BRIGHTNESS patients revealed higher rates of pCR in HRD+ patients across all treatment arms, while patients treated with carboplatin had higher pCR rates in both HRD+ and HRDsubsets. The exploratory HRD threshold of 33 (as compared to 42) appeared to provide greater sensitivity to identify responders with the addition of carboplatin plus veliparib (Telli et al. | Clin Oncol 2018). Another analysis of 519 patients with available baseline and midtreatment imaging and pathologic response data found that early radiologic response on MRI was strongly associated with pCR or minimal residual disease on final pathology. Complete response on mid-treatment MRI had a positive predictive value of 78 % for pCR (Golshan et al. Eur | Surg Oncol. 2019).

We would encourage all participating sites to provide follow-up data for their patients for the analysis of the secondary endpoints EFS and OS.

GeparNuevo (GBG 89, NCT 02685059)

is a multicenter, prospective, randomized, double-blinded, placebo controlled phase II study that has recruited 174 patients.

The study compared pCR (ypT0 ypN0) rates of neoadjuvant treatment of sequential, nab-paclitaxel followed by epirubicin and cyclophosphamide (EC) +/- the PD-L1 antibody

durvalumab in patients with early triple negative breast cancer (TNBC). The addition of durvalumab to anthracycline/taxane based chemotherapy increased the pCR rate especially when patients were treated with durvalumab alone prior to the start of chemotherapy (Loibl et al. Ann Oncol 2019). Within the translational biomarker program, oncogenic pathways and tumor mutational burden (TMB) were investigated using whole genome sequencing on 149 patients with available fresh-frozen core biopsies and blood samples. The main genetic alterations were found in TP53, c-MYC and PTEN and TMB may predict pCR in primary TNBC (Loibl et al. J Clin Oncol 2019). In addition, a correlation of TMB with composition of the immune cell subpopulations in peripheral blood as well as with pCR was evaluated. Patients with higher TMB had better pCR rates. The TMB negatively correlated with the absolute number of CD8+ T-cells, but positively with the percentages of memory cells (Seliger et al. J Clin Oncol 2019).

For timely analysis of survival endpoints we would encourage all participating sites to provide follow-up data for their patients.

GeparOLA (GBG 90, NCT 02789332)

is a multicenter, prospective, randomized, open-label phase II study that has recruited 106 patients.

The study evaluated the efficacy of paclitaxel and olaparib in comparison to paclitaxel and carboplatin followed by epirubicin/cyclophosphamide as neoadjuvant chemotherapy in patients with HER2-negative early breast cancer and homologous recombination deficiency (HRD) patients with deleterious BRCA1/2 tumor or germline mutation and/or HRD score high. While the addition of olaparib to paclitaxel was well tolerated, a pCR rate of 55.1 % (90 %CI 44.5 %-65.3 %) was not sufficient to exclude the predefined pCR rate of 55% in the olaparib arm. Subgroup analyses revealed higher pCR

rates in the olaparib group compared to the carboplatin group with regards to hormone receptor-positive tumors, patients younger than 40 years and patients with HRD score high, BRCA1/2 wildtype (Fasching et al. J Clin Oncol 2019).

Analyses on further exploratory endpoints and translational research are ongoing and we urgently need follow-up to produce long-term results for this important trial.

KATHERINE (GBG 77, NCT 01772472)

is a randomized, multicenter, open-label phase III study that has recruited 1,487 patients.

The trial investigated whether adjuvant T-DM1 was more effective than trastuzumab in patients with HER2-positive primary breast cancer who received neoadjuvant chemotherapy including trastuzumab and had residual invasive disease after surgery.

Interim analyses showed a significantly improved invasive disease-free survival (iDFS) with adjuvant T-DM1 compared to trastuzumab. Safety data were consistent with the known safety profile of T-DM1, with more adverse events associated with T-DM1 than with trastuzumab alone (von Minckwitz et al. N Engl J Med 2019). Since patients in the T-DM1 arm initially showed higher rates of peripheral neuropathy, thrombocytopenia and central nervous system (CNS) recurrence as a first iDFS event, an update analysis showed that baseline neuropathy was associated with a longer duration and a lower resolution rate of treatment-associated peripheral neuropathy regardless of treatment arm. Prior platinum therapy was associated with an increased incidence of thrombocytopenia in the T-DM1 arm, but did not affect the duration or resolution of grade 3-4 thrombocytopenia. T-DM1 was not associated with an increased overall risk of CNS recurrence and overall survival was similar in both arms after CNS recurrence (Untch et al. Ann Oncol 2019). Analysis of the patient-

Final_GBG_ASR_2019.indd 100-101 03.02.20 15:35

102 Annual Scientific Report 2019 | Follow-up Activities ______ 103

reported outcomes (PROs) demonstrated that more than 80% of randomized patients in both arms had valid baseline and ≥1 post-baseline PRO assessments. Mean scores of the EORTC Quality of Life Questionnaire-Core 30 (QLQ-C30) and QLQ-Breast Cancer (QLQ-BR23) questionnaires showed only small deterioration from baseline in patient-reported treatment-related symptoms in both study arms (Schneeweiss et al. J Clin Oncol 2019).

Further analyses are to follow in 2020 for this important study. Especially in terms of potential licensing of T-DM1, we urgently need a good quality of follow-up and therefore encourage all participating sites to provide follow-up data for their patients.

Adjuvant studies

PANTHER (GBG 53; NCT 00798070)

is an adjuvant, open-label, prospective, randomized phase III trial that has recruited 2,017 patients, including 772 from Germany.

PANTHER investigated efficacy and safety of a tailored dose-dense sequence of epirubicin/ cyclophosphamide and docetaxel in the adjuvant setting in a cohort of lymph node positive or high-risk lymph node negative patients compared to a standard anthracycline/taxane containing regimen. An efficacy analysis of the primary endpoint demonstrated that the use of tailored dose-dense chemotherapy compared with standard adjuvant chemotherapy did not result in a statistically significant improvement in breast cancer recurrence-free survival (BCRFS) with non-hematologic toxic effects being more frequent in the tailored dose-dense group (Foukakis et al. JAMA 2016). An exploratory analysis of tailored dosing demonstrated that obese patients (BMI≥30) treated with tailored dose-dense chemotherapy had significantly improved BCRFS compared to non-obese ones (BMI<30) with no differences in terms of toxicity between the BMI groups (Matikas et al. Ann

Oncol 2018). A toxicity analysis investigating neutropenic complications reported in the PANTHER study with regards to G-CSF use showed that primary prophylaxis with G-CSF reduces neutropenic events and is both feasible and effective, allowing also for dose-tailoring and increased dose intensity without excess myelotoxicity, which is essential for improved survival outcomes (Papakonstantinou et al. Acta Oncol 2019).

Estimated study completion date is January 2022. We would like to remind participating sites to provide regular follow-up data in order to avoid later delays in the study analysis.

APHINITY (GBG 67, NCT 01358877)

is an adjuvant, prospective, two-arm, randomized, multicenter, international, double-blind, placebo-controlled phase III trial that has recruited 4,805 patients.

The study compared safety and efficacy of a combination therapy with two anti-HER2 agents (trastuzumab and pertuzumab) in addition to chemotherapy in the adjuvant setting, compared to chemotherapy and trastuzumab alone. Addition of pertuzumab significantly improved the rates of invasive disease-free survival (iDFS) when it was added to trastuzumab and chemotherapy (3-year iDFS 94.1 % with pertuzumab, 93.2 % with placebo, HR 0.81 [95 % CI 0.66-1.00]; p=0.045). Diarrhea was more common with pertuzumab than with placebo (von Minckwitz et al. N Engl J Med 2017). A comprehensive biomarker analysis found that higher levels of immune markers and HER2 appeared to be associated with better prognosis and greater trastuzumab and pertuzumab benefit (Krop et al. J Clin Oncol 2019).

APHINITY has a long follow-up period (until 10 years after the randomization of the last patient, which is around September 2023), and we would like to remind participating sites to provide regular follow-up data in order to avoid later delays in the study analysis.

Final_GBG_ASR_2019.indd 102-103 03.02.20 15:35

Translational Research

Central Pathology and GBG Tumor Bank	106
Biobanking 2.0 at GBG	106
Translational Research Activities	106

Translational Research & Biobanking

Central Pathology and GBG Tumor Bank - Moving from Berlin to Marburg

At the beginning of the year 2019, the GBG biobank had to tackle a major reorganization. As of 1st January 2019, Prof. Carsten Denkert has taken over the leadership of the Institute of Pathology at the University of Marburg (UKGM). With Prof. Denkert and his group moving from Berlin to Marburg, the GBG tumor bank has also been relocated to Marburg. The move of samples and equipment has been completed at the end of April 2019, so starting from May 1st, central pathology testing and tumor banking has been taking place in Marburg. GBG-specific procedures and SOPs had to be established in the Marburg team, while GBG took over communication with the sites participating in the GBG studies to inform them about the movement. The change of location took few months and was conquered very well. We would like to take the opportunity to thank all participating sites for their cooperation and would be pleased if they would continue to give us their support.

Biobanking 2.0 at GBG

The biomaterial collection in the GBG biobank has been growing constantly over the years. Every year, many translational projects are set up, using tissue or liquid samples for biomarker analysis.

To manage the increasing number of samples according to the ethical requirements for biobanking, we have recently implemented purpose-built software for sample management (CentraXX, KAIROS GmbH). CentraXX is a webbased database system, which allows registration, processing and coordinating samples collected in multicentric trials. Both the GBG tumor bank, represented by Prof. Carsten Denkert, and the GBG liquid bank, run by Dr. Vincent von Walcke-Wulffen at BioKryo GmbH, have access to the CentraXX system and can document sample receipt directly in the database.

Translational Research Activities

ONCOBIOME, a project within EU framework "Horizon 2020"

Horizon 2020 (H2020) is the biggest EU research and innovation program with funding available

over 7 years. The proposal "ONCOBIOME" from Prof. Laurence Zitvogel (Institute Gustave Roussy, Paris) has been positively evaluated and GBG is one of the 16 participating partners throughout the EU. The aim of the 5-year project is to determine the relationship between intestinal microbial signatures and the prognosis and treatment resistance in four common cancer entities (breast, colon, lung and melanoma).

The project started early in 2019 with a kick-off meeting of all partners in Paris. The GBG participates with sample collections (tumor tissue and stool sample) as well as expertise in clinical translational research. Starting with amendment 1, the stool sample collection was introduced in the study protocol of GeparDouze. Before start of therapy, stool samples are collected in a special conservation medium and stored frozen at -20°C. The isolation of DNA and RNA for genomic and expression analyses will be conducted by cooperating partners in the ONCOBIOME project.

EPIC GeparOcto (G8), a DKTK (German Cancer Consortium) Project

Methylation profiling of G8 tissue samples is performed in the EPIC-G8 project that is led by Prof. David Capper (Charité, Berlin). The project funded by the Joint Funding Program of the German Cancer Consortium (DKTK) is focused on triple negative (TNBC) breast cancer, the most aggressive breast cancer subtype. There is clear molecular and clinical evidence that TNBC consists of different subtypes, however, existing methods cannot fully capture the diversity of TNBC. Methylation profiling has been extremely successful for classification of brain tumors. By applying this approach to the large and well characterized cohort of TNBC patients from G8 trial, clinically relevant epigenetic subtypes of TNBC may be identified.

INTEGRATE-TN, a Deutsche Krebshilfe Project

Another successful grant supporting breast cancer research is funded by Deutsche Krebshilfe. The collaborative project "INTEGRATE-TN" (coordinator Prof. Carsten Denkert, Marburg) aims to integrate tumor organoid cultures into the GBG clinical trial network to identify tumorcell biomarkers for adaptive resistance and also to validate the new biomarkers for adaptive resistance in additional clinical trials.

The project has started in October 2019. We are currently setting up a feasibility questionnaire for the GBG study sites for participation in the

project. Prerequisite to take part in this project is the ability to provide fresh tissue from surgery, which has to be stabilized in a special media during transport to the TUM in Munich (coordinator Prof. Wilko Weichert).

If your site is interested in taking part in this ambitious project, please contact the Translational Research group at GBG.

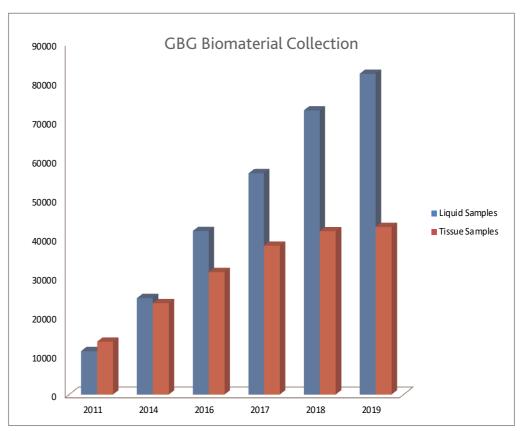


Figure 1: Samples at GBG Biobank

New proposals may also be submitted by groups that are currently not represented in any GBG subboard. https://www.gbg.de/de/forschung/trafo.php

FURTHER INFORMATION:

Dr. Bärbel Felder Translational Research

trafo@GBG.de

Phone: +49 6102 7480-217
Fax: +49 6102 7480-440

Final_GBG_ASR_2019.indd 106-107 03.02.20 15:3

108 Annual Scientific Report 2019 Study Finder

GBG Study Finder 2020*

Early Breast Cancer

Operative Studies (M0)	
Operable node-positive breast cancer: Most suspicious lymph node clipped AJCC/UICC stage II-III Eligible for primary axillary lymph node dissection or sentinel lymph node biopsy procedure	TAXIS Tailored axillary surgery with or without axillary lymph node dissection followed by radiotherapy. All patients will receive breast/chest wall and regional nodal irradiation. Patients without axillary lymph node dissection will receive additional irradiation of the axilla
(Neo)adjuvant Studies (M0)	
Untreated triple-negative breast cancer: cT2-cT3 cT1c only if N+	GeparDouze Neoadjuvant chemotherapy with 12x paclitaxel weekly + carboplatin q3 followed by EC/AC q2 or q3 + atezolizumab or placebo q3 followed by adjuvant therapy with atezolizumab or placebo q3 (total duration of atezolizumab/placebo will be one year)
Operable triple-negative breast cancer: • Stage II-III • pathological tumor size > 2 cm if pN0	ALEXANDRA Arm A: Adjuvant chemotherapy with 12x paclitaxel weekly followed by EC/AC q2 + atezolizumab q2 followed by atezolizumab monotherapy q2 (total duration of atezolizumab will be one year) Arm B: Chemotherapy alone
Operable HR+ / HER2- breast cancer: • Age ≥ 70 years • Stage II-III • Adjuvant chemotherapy required and feasible	APPALACHES Arm A: Palbociclib 2 years + standard adjuvant endocrine treatment ≥ 5 years Arm B: Adjuvant chemotherapy followed by standard adjuvant endocrine treatment ≥ 5 years
HR+ breast cancer: Ongoing hormone therapy with tamoxifen (20mg)	TAMENDOX Genotype and phenotype guided supplementation of a standard therapy with tamoxifen with the active metabolite endoxifen
Non-pCR after NACT • HER2-negative breast cancer - HR- (TNBC) or - HR+ with CPS-EG score ≥3 or 2 and ypN+ • At least 16 weeks of taxane-based chemotherapy	SASCIA Arm A: Sacituzumab govitecan 8 cycles d1,8 q3w Arm B: Treatment of physician's choice (8 cycles capecitabine or platinum-based chemotherapy or observation) In patients with HR-positive breast cancer, endocrine- based therapy will be administered according to local guidelines
Breast Cancer in Special Situations	
 Patients with breast cancer in pregnancy non-pregnant women with breast cancer 40 years M1 possible 	BCP Prospective and retrospective registry study for the diagnosis and treatment of breast cancer in pregnancy compared to young non-pregnant women

Metastatic Breast Cancer

Metastatic Breast Cancer ER-positive or -negative, HER2	-positive or-negative
 1st and 2nd line therapy in metastatic setting Biopsy of a metastatic lesion is feasible, provision of FFPE & Fresh Frozen samples 	AURORA Tissue collection of the primary tumor and a metastasis and blood collection
Brain metastases of breast cancer	Brain Metastases in Breast Cancer (BMBC) Retrospective and prospective registry designed to collect tumor characteristics of the primary and metastatic tumor as well as treatment data and biomaterial from patients diagnosed with brain metastases of breast cancer
HER2+ Breast Cancer	
HER2+ and HR+ metastatic breast cancer: 1st line chemotherapy (for metastatic breast cancer) with a taxane or vinorelbine in combination with trastuzumab +/- pertuzumab	PATINA Maintenance therapy with anti-HER2 and endocrine therapy +/- palbociclib
HER2-Breast Cancer	
HER2+ and HR+ metastatic breast cancer: At least 4 cycles of a 1 st line mono- or polychemotherapy Pretreatment with CDK 4/6 inhibitors is allowed	AMICA Endocrine maintenance therapy after chemotherapy +/- ribociclib
HER2- and HR+ metastatic breast cancer: 1st systemic therapy for the treatment of metastatic breast cancer No asymptomatic oligometastases of the bone as the only site of meatstatic disease	PADMA Endocrine therapy + palbociclib versus mono-chemotherapy +/- endocrine maintenance therapy Possible mono-chemotherapies (Physician's choice): • Capecitabine p.o. • Epirubicine i.v. • Paclitaxel i.v. • Vinorelbine i.v.
HER2- and HR+ metastatic breast cancer: • Postmenopausal women • Recurrence or progression after therapy with a non-steroidale aromatase inhibitor	DESIREE Exemestane in combination with induction dose escalation o everolimus versus exemestane in combination with standard therapy with everolimus

^{*}Further studies are currently in planning. Please refer to $\underline{www.gbg.de}$

Final_GBG_ASR_2019.indd 108-109 03.02.20 15:35

Notes	

Notes	

Notes	

Final_GBG_ASR_2019.indd 114-115

Impressum:

GBG Forschungs GmbH Martin-Behaim-Strasse 12 63263 Neu-Isenburg GERMANY

www.GBG.de

Final_GBG_ASR_2019.indd 116 03.02.20 15:35